
Attack on the
Core!

@zer0mem

#whoami - Peter Hlavaty (@zer0mem)
[KEEN TEAM]

 Background

 @K33nTeam

 Previously ~4 years in ESET

 Contact

 twitter : @zer0mem

 weibo : weibo.com/u/5238732594

 blog : http://zer0mem.sk

 src : https://github.com/zer0mem

outline

ATTACKER

▪ KernelIo tech

▪ Vulnerability cases

▪ Design features (flaws)

▪ State of targets / security

DEVELOPER

▪ Point of view

▪ Goal

▪ Environment

▪ C++! no more shellcoding!

Part 1 -> KernelIo tech

Privileged cpl3 != cpl0
[NtQuerySystemInformation]

• NtQueryInformation from win8.1
requires elevated privileges

• Still callable from user mode

• Driver Signing Enforcement does
not like installing drivers even
from privileged ones …

• Privileged are enpowered with
good eye sight, kernel leakage

Read & Write boosting
[windows]

• write-where vuln

• what => should be above
read / write target

• Pool address can be
sufficient

Read & Write boosting
[windows]

 KPP is not here to punish
attackers

 leak & write-where-
(semi)what

 patch & use & patch back

 turned into full KernelIo

 ReadFile alternative just
with
nt!MmUserProbeAddress

http://haxpo.nl/wp-content/uploads/2014/01/
D1T2-Bypassing-Endpoint-Security-for-Fun-and-Profit.pdf

Read & Write boosting
[windows]

https://www.dropbox.com/sh/bkfajegn2mn35ng/AABm_RyD4x9VLzYjI9n9Dl2Wa?dl=0

http://haxpo.nl/wp-content/uploads/2014/01/D1T2-Bypassing-Endpoint-Security-for-Fun-and-Profit.pdf
http://haxpo.nl/wp-content/uploads/2014/01/D1T2-Bypassing-Endpoint-Security-for-Fun-and-Profit.pdf
https://www.dropbox.com/sh/bkfajegn2mn35ng/AABm_RyD4x9VLzYjI9n9Dl2Wa?dl=0

Read & Write boosting
[linux / droids]

• leak & write-where vuln

• what => should be above read / write target

• nullptr / pool address can be sufficient

http://vulnfactory.org/blog/2011/06/05/smep-what-is-it-and-how-to-beat-it-on-linux/

http://vulnfactory.org/blog/2011/06/05/smep-what-is-it-and-how-to-beat-it-on-linux/

 PXN UDEREF handle it

 PXN not in default build
of linux

 On droids ? XD

 turned into full KernelIo

http://vulnfactory.org/research/stackjacking-infiltrate11.pdf

Read & Write boosting
[linux / droids]

http://vulnfactory.org/research/stackjacking-infiltrate11.pdf

Why KernelIo ?

▪ abstraction behind
virtual address

▪ what is SMAP / SMEP
about ?

MMU straigforward idea
[PoC by MWR Labs]

1. choose address X with isolated page tables
1. To be sure write-where does not hit other used memory

2. mmap (X)

3. Patch S/U bits (write-where)

4. S/U bits need to patch per PXE !
1. self ref, can help

5. cpl0 memcpy (X, shellcode)

6. Pwn (SMEP, SMAP out of the game)

https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass/

http://fluxius.handgrep.se/2011/10/20/the-art-of-elf-analysises-and-exploitations/

https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass/
http://fluxius.handgrep.se/2011/10/20/the-art-of-elf-analysises-and-exploitations/

Symbolic cpl0 – cpl3 separators

“
The ProbeForRead routine checks
that a user-mode buffer actually
resides in the user portion of the
address space, and is correctly
aligned.
“

 Ok, what about
aliasing ?!

 and about ret2dir
approach ?

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kemerlis

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kemerlis

KERNEL- FAIL – SAFE – CHECKS

 copy_to/from_user

 ProbeForRead/Write

 Checking just
symbolic values

 not cover aliasing…

Part 2 -> cases

Out of Boundary

1. Trivial to exploit

2. Generic implementation

3. write/read – where

4. NO - SMAP

5. but sometimes PXN

Out of Boundary

 what if SMAP enabled ?

 Is over ?

 Read – no problem, just do
not try to read from
usermode

 Write – you have to know
where to write – relative
positioned structs

kmalloc under/overflow

1. under/overflowed kmalloc

2. copy_to/from_user

3. search_exception_table
for frv, but idea same

4. force copy_to/from_user
fail

5. Copied just controlled
bytes even in
under/overflow situation!

KASLR

• From win8.1
NtQuerySystemInfo is just
for privileged user

• /proc/kallsyms same, just for
privileged ones

• Need to info-leak

• Read-where vuln

• Abusing weak or old
mechanism

KASLR

 PageTable concept is old

 That time no hardering needed

 Crucial for performance

 Timing attacks, PageFault
measuring, seems doable, see
recent research

 A lot of static PHYSICAL
addresses, KASLR weakened

 MMU mechanism attacks
target of recent research, and
it works …

http://labs.bromium.com/2014/10/27/tsx-improves-timing-attacks-against-kaslr/
http://felinemenace.org/~nemo/docs/TR-HGI-2013-001-real.pdf

http://labs.bromium.com/2014/10/27/tsx-improves-timing-attacks-against-kaslr/
http://felinemenace.org/~nemo/docs/TR-HGI-2013-001-real.pdf

Part 3 -> design features
(flaws)

Linked lists

• nt!_list_entry / list_head

• Lazy list entry assertions

• Proper design ?

• Manipulating next / prev
outside of API ?

• Hardening ?

• Common member

• Intrusive containers

• Redirect list

• pool leak && write-where

• Own content && abussing
algo ?

http://www.k33nteam.org/blog.htm (nt!list_entry)

http://www.k33nteam.org/blog.htm

Kernel hidden pointers

plenty of c++
alike vtables

callbacks

ops

context func

Interesting
design features

typecast instead
of inheritance

Plenty data
pointers

No integrity
checks

Plenty data
structs

Sensitive trusted
context

No
hardening

Plain pointers

http://www.nosuchcon.org/talks/2013/
D3_02_Nikita_Exploiting_Hardcore_Pool_Corruptions_in_Microsoft_Windows_Kernel.pdf

http://www.nosuchcon.org/talks/2013/D3_02_Nikita_Exploiting_Hardcore_Pool_Corruptions_in_Microsoft_Windows_Kernel.pdf
http://www.nosuchcon.org/talks/2013/D3_02_Nikita_Exploiting_Hardcore_Pool_Corruptions_in_Microsoft_Windows_Kernel.pdf

Kernel ops by design

• Callback mechanism

• open / write / read …

• If not implemented
NULLPTR

• If not implemented no call
performed

1. nullptr write vuln

2. null some operation

3. Abuse scoped resource
handling logic

4. pwn

Part 4 -> state of exploitation

before win8.1

POOL
HARDENING

SMEP

SMAP

PLAIN
PTRS

“KASLR”
NtQuerySysInfo

even kids … … do pwn

Era of Windows 8.1, earlier and current linux

POOL
HARDENING

SMEP

SMAP

PLAIN
PTRS

KASLR
 Cool, seems more hardening

More software security features

 Access control improved

UEFI

 Finally! More hardware features
goes implemented SMEP/SMAP, …

 SMAP still waiting in some cases
….

 Exploiting coming finally
challenging! BUT still kernel not
hardened enough

Future of OS ?

POOL
HARDENING

SMEP

SMAP

HARDENED
PTRS

KASLR
Hardware features implemented

Strong complex access control
policy

Well randomized kernel space

Kicked off obsolete designs

Well designed core

No plain pointers

Data integrity checks

Rebirth to
K E R N E L

Developing begins

CHANGING DIRECTION
[everything is just point of view]

Until now you were
ATTACKER

• NO MATTER HOW, but get
EXEC!

• hooks, patching, non-safe
walkers, etc.

Now you are

DEVELOPER !

• Pretend to be one of them

• Now you deal with KPP and
others mitigations

Kernel windows DEVELOPER view

▪ In kernel, but some obstacles reminds :

▪ PsSet * Routine, ObRegisterCallbacks, etc.
– Callback integrity validation!

▪ IoAttachDeviceToDeviceStack, IoQueueWorkItem
– DEVICE_OBJECT* needed (own is preferable)

Kernel DEVELOPing begins
[DRIVER/DEVICE_object*]

▪ Kernel loader method, or :

▪ Create your own!
– IoCreateDevice

– _OBJECT_HEADER + DRIVER_OBJECT

Kernel monitoring
[device attaching]

▪ Attach to driver

▪ Filter :
– Network communication

– File system communication

– …

Kernel monitoring
[legacy]

▪ File System Filter Driver

▪ FAST_IO_DISPATCH
– Register dropped files

– Access to files

– …

▪ Also minifilters are option

Kernel monitoring
[IoCompletion]

▪ IoCompletion
– Monitor ALPC

– Used by resolving host, etc. etc.

– Remote process communication

– Per process

Linux, everything is a file

1. Kernel ops

2. Find in which one you
are interesting in

3. Register to chain

4. cdev_add
(register_chrdev)

SELinux, SEAndroid, ACL

 Kernel escape

 Natural bypass

 Feature :

1. Developing superuser
deamon

2. does not rely on special
syscalls

3. Normal application
development, api …

4. Separation of responsibilities

5. Kernel – bypass policy checks

6. Daemon – provide boosted
functionality to user

come on … why shellcoding or pure c ?

C++

Exploitation means developming!

▪ C++ is about compiler & you skills

▪ You think you can wrote better shellcode than
compiler ?

▪ You can code really close to assembly level –
when you know your compiler

▪ c++ well maintainable, scalable, modulable

▪ Design patterns

▪ Complex frameworks

http://www.exploit-monday.com/2013/08/writing-optimized-windows-shellcode-in-c.html
https://github.com/mattifestation/PIC_Bindshell (Window Shellcode in C)

http://www.exploit-monday.com/2013/08/writing-optimized-windows-shellcode-in-c.html
https://github.com/mattifestation/PIC_Bindshell

Exploiting is development!

▪ Before you can write PoC for exploits as easy as hello world

▪ Things getting complex

▪ Now with same style you can end up with unreadable master piece

▪ Next time you have good time to rewriting lot of the same logic

▪ And at the end you end up with black-boxes chained together with
black-magic, somehow working

▪ Something will change … start fixing black-box

Exploitation framework can be powerfull

▪ UserCode in kernel allowed!
– Kernel code hidden inside binary

– Fully c++ driver!

▪ Mixing User & Kernel code
– just avoid direct linking imported kernel functions!

– Also avoid to mixing um & km headers together in compile time ;)

– Compile standalone kernel code as .lib

– link kernel code .lib to exploit .exe

1.

2.

3.

4.

Copy whole PE to RWE kernel page
 ExAllocatePool(NonPagedPoolExecute,SizeOfImage);

Fix Rellocations

resolve kernel part of
Import table

Ready for exec with CPL0!

CPL Teleport

KERNEL as exploitation VECTOR

Raise of C++, no more shellcoding!

1. Mixing user & kernel code

2. no imports

3. c++

4. relocations

5. Dynamic loader

Raise of C++, no more shellcoding!

1. c++ kernel code

2. Compiled with user mode code

3. No Imports, but does not impact code

C++ ‘shellcoding’ framework

▪ no import table

▪ no need to handle imports by your own

▪ .py scripts set up all imports

▪ no need to code position independent code

▪ fixups resolved by loader

▪ C++ (partially also std & boost) supported

▪ no need to ship kernel code as resource, or shellcode

▪ no need to special coding style to kernel module, classical developing

▪ All features (c++, imports, fixups..) applies to kernel code as well

http://www.zer0mem.sk/?p=517

http://www.codeproject.com/Articles/22801/Drivers-Exceptions-and-C

http://www.hollistech.com/Resources/Cpp/kernel_c_runtime_library.htm

http://www.zer0mem.sk/?p=517
http://www.codeproject.com/Articles/22801/Drivers-Exceptions-and-C
http://www.hollistech.com/Resources/Cpp/kernel_c_runtime_library.htm

C++ ‘shellcoding’ framework

https://github.com/k33nteam/cc-shellcoding

releasing very soon @K33nTeam

https://github.com/k33nteam/cc-shellcoding

materials
(not listed in slides before)

– http://www.codeproject.com/Articles/43586/File-System-Filter-Driver-Tutorial

– www.bitnuts.de/KernelBasedMonitoring.pdf

– https://projects.honeynet.org/svn/capture-hpc/capture-hpc/tags/2.5/capture-
client/KernelDrivers/CaptureKernelDrivers/FileMonitor/CaptureFileMonitor.c

– http://www.osronline.com/article.cfm?article=199

http://www.codeproject.com/Articles/43586/File-System-Filter-Driver-Tutorial
http://www.bitnuts.de/KernelBasedMonitoring.pdf
https://projects.honeynet.org/svn/capture-hpc/capture-hpc/tags/2.5/capture-client/KernelDrivers/CaptureKernelDrivers/FileMonitor/CaptureFileMonitor.c
http://www.osronline.com/article.cfm?article=199

jfang

liac
wushi nforest

NTarakanov

j00ru

aionescu

Acknowledge Thanks to :

cesarcer

dan rosenberg

rafal wojtczuk

krzywix

maxim

We are hiring!

▪ #1 vulnerability research team in China
– http://www.k33nteam.org/cvelist.htm

– pwn2own

▪ Enjoying research ?
– Mobile (Android, iOS, WP)

– PC (Windows, OS X, Chrome OS, etc.)

▪ Willing to move to Shanghai ?
– Beijing ?

▪ Want to join our team ?
– Application security

– Kernel security hr (at) keencloudtech.com

http://www.k33nteam.org/cvelist.htm

2014 - $500,000
2015 - $???????? Pick a device, name your own challenge!

Q & A

Thank You.

follow us
@K33nTeam

peter (at) keencloudtech.com

