
It’s all about gong fu! (part 2)  

Understanding and Defeating Windows 8.1 Kernel 
Patch Protection: 

Andrea Allievi 
Talos Security Research and Intelligence Group - Cisco Systems Inc. 

aallievi@cisco.com  
November 20th, 2014 - NoSuchCon 



2 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Who am I 
•  Security researcher, focused on Malware Research 
•  Work for Cisco Systems in the TALOS Security Research and 

Intelligence Group 

•  Microsoft OSs Internals enthusiast / Kernel system level developer 

•  Previously worked for PrevX, Webroot and Saferbytes 

•  Original designer of the first UEFI Bootkit in 2012, and other 
research projects/analysis   



3 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Agenda 
0.  Some definitions  
1.  Introduction to Patchguard and Driver Signing Enforcement 

2.  Kernel Patch Protection Implementation 

3.  Attacking Patchguard 

4.  Demo time 

5.  Going ahead in Patchguard Exploitation 



4 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Introduction 



5 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Definitions 
•  Patchguard or Kernel Patch Protection is a Microsoft technology 

developed to prevent any kind of modification to the Windows Kernel 

•  Driver Signing Enforcement, aka DSE, prevents any non-digitally 
signed code from being loaded and executed in the Windows Kernel 

•  A Deferred Procedure Call, aka DPC, is an operating system 
mechanism which allows high-priority tasks to defer required but 
lower-priority tasks for later execution 

•  An Asynchronous Procedure Call, aka APC, is a function that 
executes asynchronously in the context of a particular thread.  



6 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

•  Snake campaign – Uroburos rootkit: an advanced rootkit capable of 
infecting several version of Windows, including Windows 7 64 bit 

•  Rootkit not able to infect Windows 8 / 8.1 because of security 
mitigations, enhanced DSE and Patchguard implementation  

•  Reversed the entire rootkit; this made me wonder how to to defeat 
DSE and Patchguard in Windows 8.1.  

•  This was done in the past with an UEFI bootkit - my approach now 
uses a kernel driver 

 

My work 



7 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

•  Implemented completely differently than on Windows 7 (kernel 6.1)  
•  A kernel driver is usually loaded by the NtLoadDriver API function – 

ends in ZwCreateSection. 

•  A large call stack is made, that ends in SeValidateImageHeader  

•  SeValidateImageHeader - CiValidateImageHeader code integrity 
routine 

•  Still easy to disarm, a simple modification of the g_CiOptions internal 
variable is enough 

Windows 8.1 Code Integrity  



8 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

•  If the value of the g_ciOptions variable changes, the Patchguard code 
is able to pinpoint the modification and crash the system 

•  Kernel Patch Protection implemented in various parts of the OS. 
Function names voluntarily misleading 

•  Patchguard in Windows 8.1 is much more effective than previous 
implementations 

•  Multiple PG buffers and contexts installed on the target system 

•  Uses a large numbers of tricks to hinder analysis 

Windows 8.1 Kernel Patch Protection  



9 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Windows 8.1 Kernel Patch Protection 
Implementation 



10 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

•  KeInitAmd64SpecificState raises a Divide Error exception – execution 
transferred to KiFilterFiberContext 

•  KiInitializePatchguard is a huge function (~ 96 Kbyte of pure code) 
that builds a large PG buffer  

•  Structured Exception handling implementation: 
http://vrt-blog.snort.org/2014/06/exceptional-behavior-windows-81-
x64-seh.html  

•  Other initialization point: ExpLicenseWatchInitWorker (rare) 

Kernel Patch Protection – How does it work? 



11 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

int	  KeInitAmd64SpecificState()	  { 
	  	  	  	  DWORD	  dbgMask	  =	  0; 
	  	  	  	  int	  dividend	  =	  0,	  result	  =	  0; 
	  	  	  	  int	  value	  =	  0;	  
 
	  	  	  	  //	  Exit	  in	  case	  the	  system	  is	  booted	  in	  safe	  mode 
	  	  	  	  if	  (InitSafeBootMode)	  return	  0; 
	  	  	  	  //	  KdDebuggerNotPresent:	  1	  -‐	  no	  debugger;	  0	  -‐	  a	  debugger	  is	  attached 
	  	  	  	  dbgMask	  =	  KdDebuggerNotPresent; 
	  	  	  	  //	  KdPitchDebugger:	  1	  -‐	  debugger	  disabled;	  0	  -‐	  a	  debugger	  could	  be	  attached 
	  	  	  	  dbgMask	  |=	  KdPitchDebugger; 
	  	  	  	  	  
	  	  	  	  if	  (dbgMask)	  dividend	  =	  -‐1;	  	  	  	  	  	  //	  Debugger	  completely	  disabled	  (0xFFFFFFFF) 
	  	  	  	  else	  dividend	  =	  0x11;	  	  	  	  	  	  	  	  	  	  	  	  //	  Debugger	  might	  be	  enabled 
	  	  	  	  	  
	  	  	  	  value	  =	  (int)_rotr(dbgMask,	  1);	  	  	  	  //	  value64	  is	  equal	  to	  0	  if	  debugger	  is	  enable 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	   	  	  	  	  //	  0x80000000	  if	  debugger	  is	  NOT	  enabled	  	  
 
	  	  	  	  //	  Perform	  a	  signed	  division	  between	  two	  32	  bit	  integers: 
	  	  	  	  result	  =	  (int)(value	  /	  dividend);	  	  	  //	  IDIV	  value,	  dividend 
	  	  	  	  return	  result; 
} 

 



12 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

The Kernel Patch Protection buffer 
3 main sections surrounded by a random number of randomly generated values 
1.  Internal configuration area.  
 



13 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

The Kernel Patch Protection buffer 

2.  Patchguard’s code and a copy of some NT kernel functions 
 



14 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

The Kernel Patch Protection buffer 

3.  Protected code and data 



15 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Implementation - Scheme 

•  Patchguard code is linked to the system in different ways: Timers, DPC 
routines, KPRCB reserved data fields, APC routines and a System Thread 

•  Patchguard initialization stub function KiFilterFiberContext  randomly 
decides  the PG link type and the number of PG contexts (1 to 4) 

ü  See here: 
http://blog.ptsecurity.com/2014/09/microsoft-windows-81-kernel-
patch.html  

•  Entry points code: recover PG contexts, decrypts the first 4 bytes 



16 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Implementation – Scheme 2 
•  Patchguard code located inside the big buffer (section 2) organized mainly in 

4 blocks:   



17 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Kernel Patch Protection – System checks 

•  Patchguard code implemented mainly in the “INITKDBG” section + 
chunks in “.text” section 

•  INITKDBG section copied, then discarded 

•  The self-verification routine executed with a copy of the original 
processor  IDT 

•  Finally queues a Work item  ->  Main Check Routine… 



18 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

The Main check routine 
•  Self-verification of the remaining bytes of section 1 and 2 

•  PatchguardEncryptAndWait function: on-the-fly encryption, waits a random 
number of minutes 

•  Verifies each code and data chunks of the protected kernel modules. 

•  Uses an array of Patchguard data structures 

•  If a modification is detected, a system crash initiated by “SdbpCheckDll” 
function 



19 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

//	  Calculate	  a	  DWORD	  key	  for	  a	  specified	  Chunk 
DWORD	  CalculateNtChunkPgKey(QWORD	  qwMasterKey,	  int	  iNumBitsToRotate,	  LPBYTE	  chunkPtr,	  DWORD	  chunkSize)	  
{ 

//	  …	  some	  declarations	  here	  … 	   
for	  (count	  =	  0;	  count	  <	  chunkSize	  /	  sizeof(QWORD);	  count++)	  { 

QWORD	  *	  qwPtr	  =	  (QWORD*)chunkPtr; 	  //	  Current	  buffer	  QWORD	  pointer 
qwCurKey	  =	  _rotl64((*qwPtr)	  ^	  qwCurKey,	  iNumBitsToRotate);	  //	  Update	  the	  key 
chunkPtr	  +=	  sizeof(QWORD); 	  //	  Update	  buffer	  ptr 

} 
	   

//	  Calculate	  remaining	  bytes	  to	  process 
DWORD	  dwRemainingByte	  =	  chunkSize	  %	  sizeof(QWORD); 
for	  (count	  =	  0;	  count	  <	  dwRemainingByte;	  count++)	  { 

LONGLONG	  qwByte	  = 	  //	  Current	  signed-‐extended	  byte 
	  (LONGLONG)(*chunkPtr); 

qwCurKey	  =	  _rotl64(qwCurKey	  ^	  qwByte,	  iNumBitsToRotate); 	   	  	  //	  Update	  the	  key 
chunkPtr	  ++; 	   	  //	  Update	  buffer	  ptr 

} 
	   
//	  Calculate	  DWORD	  key 
while	  (qwCurKey)	  { 

dwRetKey	  ^=	  (DWORD)qwCurKey; 
qwCurKey	  =	  qwCurKey	  >>	  31; 

} 
//	  Keep	  in	  mind	  that	  the	  following	  key	  is	  verified	  after	  resetting	  its	  MSB:	  (dwRetKey	  &	  0x7FFFFFFF) 
return	  dwRetKey; 

} 
 



20 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Attacking Patchguard 



21 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Available attacks 

All the available attacks have been defeated by the last version of Kernel Patch 
protection: 

•  x64 debug registers (DR registers) 

•  Exception handler hooking, Patching the kernel timer DPC dispatcher 

•  Hooking KeBugCheckEx and/or other kernel key functions 

•  Patchguard code decryption routine modification (McAfee method) 



22 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Available attacks – The Uroburos method 

•  Uroburos rootkit hooks RtlCaptureContext internal Nt Kernel routine.  

•  It’s a function directly called by KeBugCheckEx, used by Patchguard to crash 
the system.  

•  Uroburos filters all the RtlCaptureContext calls made by KeBugCheckEx 

•  If the call is a Patchguard one, it restores the thread execution to its start 
address. 

•  If the IRQL too high - Uroburos exploits its own hook to KiRetireDpcList 



23 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Some new attacks 
2 different types of feasible attacks idealized: 

•  Neutralize and block every Patchguard entry point 

•  On-the-fly modification of the encrypted Patchguard buffer, and make 
it auto-deleting 

After my first article released, other guy, Tandasat method: hooking the  
end of  KiCommitThreadWait and KiAttemptFastRemovePriQueue  
functions https://github.com/tandasat/PgResarch/tree/master/DisPG 

 



24 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Some new attacks – Can we innovate? 
•  All available methods try to prevent the Patchguard Code from being 

executed. 

•  Patchguard code can be an attacker best friend J 

 



25 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Forging Windows 8.1 Patchguard 
My method uses a kernel-mode driver that does some things: 

1.  Acquires all processors ownership (very important step) and searches the 
Patchguard buffers starting from Windows Timers queue, DPC list, processor 
KPRCB structure, APC list, system threads list 

2.  Retrieves all the PG contexts (decryption key and so on...), and decrypts the 
Patchguard buffers 

3.  Analyses the buffer, retrieves all the needed information, and modifies it in a clever 
manner: 

ü  Identify self-verify routine and disable it 

ü  Identify main check routine and disarm it 

ü  Let the Patchguard code execution continues 

4.  Re-encrypts Patchguard buffer, releases all processors ownership 



26 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 



27 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Forging Windows 8.1 Patchguard - Details 
The implementation is not easy. I have had to overcome some difficulties. Patchguard 
Contexts:  

1.  Timers – Search in system timer list 

2.  DPC – Search in system DPCs queue 

3.  APC – Insert an hook to KeInsertQueueApc  

4.  KPRCB – Analyse the undocumented fields in KPRCB structure (AcpiReserved, 
HalReserved) 

5.  Patchguard Thread – Search in the system threads list (very rare) 

6.  Other entry points (KiBalanceSetManagerPeriodicDpc) – KeInsertQueueDpc hook 



28 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Demo Time 



29 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Demo Time - Results 
•  Windows 8.1 Professional x64 – Fully updated 

•  Results: 

ü  Reliable method, works well on all versions of Windows 8.1  

ü  Hard to develop 

•  Comparison with other method: 

ü  Completely different method, platform dependent (it relies on “symsrv.dll” to 
obtain Windows symbols) 

ü  It can’t take advantage of Patchguard code to do some attacker’s dirty things J 



30 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Going ahead 



31 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Anti-Patchguard – Going ahead 
•  What happens if an attacker changes some verification hases directly located 

in the Patchguard buffer? 

•  A very strong weapon could bear: 
Use Windows 8.1 code to protect an attacker’ rootkit code 

•  The Patchguard buffer, in its main section, includes 3 keys: The master key 
and 2 self-verification keys  

•  To achieve our goal we should modify some DWORD hashes, and finally we 
need to resign the entire Patchguard buffer 



32 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

//	  Re-‐sign	  a	  Patchguard	  buffer	  modifying	  its	  Self-‐Verify	  keys	  
NTSTATUS	  ReSignPgBuffer(LPBYTE	  lpPgBuff)	  {	  

//	  ...	  a	  lot	  of	  declarations	  here	  ...	  
lpqwPgSelfVerifyKey	  =	  (QWORD*)((LPBYTE)lpPgBuff	  +	  0x3F0);	  

	   //	  Save	  original	  data	  and	  set	  to	  0	  
	   RtlCopyMemory(&orgPgWorkItem,	  pPgWorkItem,	  sizeof(WORK_QUEUE_ITEM));	  
	   RtlZeroMemory(pPgWorkItem,	  sizeof(WORK_QUEUE_ITEM));	  
	   qwOrgPgSignKey	  =	  *lpqwPgSelfVerifyKey;	  lpqwPgSelfVerifyKey[0]	  =	  0;	  
	   dwOrgNumOfVerifiedBytes	  =	  *lpdwNumOfVerifiedBytes;	  lpdwNumOfVerifiedBytes[0]	  =	  0;	  
	  
	   //	  Now	  recalculate	  Patchguard	  Self-‐Verify	  Key	  
	   qwNewSelfKey	  =	  CalculatePgSelfVerifyKey(qwPgMasterKey,	  iNumToRotate,	  (LPBYTE)lpPgBuff,	  

dwNumBytesToSelfCheck);	  
	   DbgPrint("ReSignPgBuffer	  -‐	  Successfully	  calculated	  and	  replaced	  PG	  Self-‐Verify	  Key.	  Old	  One:	  

0x%08X'%08X	  -‐	  New	  One:	  0x%08X'%08X.\r\n",	  
	   	   qwOrgPgSignKey	  >>	  32,	  (DWORD)qwOrgPgSignKey,	  qwNewSelfKey	  >>	  32,	  (DWORD)qwNewSelfKey);	  
	   *lpqwPgSelfVerifyKey	  =	  qwNewSelfKey;	  
	  
	   //	  Restore	  previous	  data	  
	   RtlCopyMemory(pPgWorkItem,	  &orgPgWorkItem,	  sizeof(WORK_QUEUE_ITEM));	  
	   *lpdwNumOfVerifiedBytes	  =	  dwNumBytesToSelfCheck;	  
	   return	  STATUS_SUCCESS;	  
}	  



33 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Use Windows 8.1 code to protect an attacker’s rootkit code 
•  Our tests have demonstrated that the method is reliable, we have installed 

and protected a hook to the NtCreateFile API function 

•  Patchguard recognizes the new code as original and starts protecting it 

•  If an anti-rootkit solution tries to touch the “hook” code, the system suddenly 
crashes J 

•  Some problems, research still in progress 

•  Very cool way to recruit an opponent technology J J 

•  Time for another demo? 



34 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Use Windows 8.1 code to protect an attacker’ rootkit code 



35 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Questions Time 



36 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Resources and Acknowledgements 



37 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Available resources 
Patchguard 8.1 Introduction material available on the VRT blog: 
1.  http://vrt-blog.snort.org/2014/04/snake-campaign-few-words-about-uroburos.html 
2.  http://vrt-blog.snort.org/2014/06/exceptional-behavior-windows-81-x64-seh.html 
3.  http://vrt-blog.snort.org/2014/08/the-windows-81-kernel-patch-protection.html 

Analysis of previous versions of Patchguard: 
1.  http://www.zer0mem.sk/?p=271 (inspiration for my title) 
2.  http://www.uninformed.org/?v=3&a=3 
3.  http://uninformed.org/index.cgi?v=8&a=5 
4.  http://www.codeproject.com/Articles/28318/Bypassing-PatchGuard 

Brand-new analysis, methods and techniques: 
1.  http://blog.ptsecurity.com/2014/09/microsoft-windows-81-kernel-patch.html 
2.  https://github.com/tandasat/PgResarch/tree/master/DisPG 

 



38 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Personal info 
Andrea Allievi – AaLl86 
Email: aallievi@cisco.com  

Twitter: @aall86 

Talos blog: http://blogs.cisco.com/talos 

Sourcefire VRT blog (retired): http://vrt-blog.snort.org/  

My personal website: www.andrea-allievi.com 

Skype: aall86 
 

For any question, information, send me a mail or a request on skype! 



39 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

•  TALOS Team for the help and support: Alain, Shaun, Angel, 
Douglas, Mariano, Emmanuel 

•  Microsoft engineers for developing a great technology 

•  My family and girlfriend for the support J 

•  Zer0mem for lending me the title J 

Acknowledgements - Thanks to 



40 © 2014  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 

Thank you for attending! 
ps. Ready for the next Windows 10 Patchguard disarm? 




