
http://www.dontstuffbeansupyournose.com
S.A. Ridley & S.C Lawler 1

WHO’D HAVE THOUGHT
THEY’D MEET IN THE MIDDLE?

http://www.dontstuffbeansupyournose.com

Stephen A. Ridley

NoSuchCon Paris 2013

“ARM Exploitation” and “Hardware Hacking”
convergence memoirs

http://www.dontstuffbeansupyournose.com
S.A. Ridley & S.C. Lawler

First things first...

http://www.dontstuffbeansupyournose.com
S.A. Ridley & S.C. Lawler

A bit about me...
• Run a blog with Stephen C. Lawler

• www.dontstuffbeansupyournose.com

• Currently: Principal Accipiter Research

• Previously:

• Chief Information Security Officer (at a bank), Senior Consultant
Matasano

• Senior Security Researcher McAfee (founded Security Architecture Group)

• Kenshoto Founder, CSAW CTF Judge (Reverse Engineering)

• Guest Lecturer/Instructor (New York University, Netherlands Forensics
Institute, Department of Defense, Google, et al)

• Author of several upcoming books (“Android Hackers Handbook”
September 2013 Wiley & Sons)

Who Are We? (Ridley)

Who Are We? (Lawler)

• Currently: Independent Security Researcher,
Software Developer (Bits And Data Associates)

• Previously: Principal at Mandiant, Principal at
ManTech

• Not originally a security guy, used to program Sonar
systems for the Navy

• Specializing in research, Kernel development,
Kernel internals and Advanced Software

Exploitation

Who Are We? (Lawler)

Talk Outline
• How did we get started with this stuff?

• “Hardware Hacking for Software People” (ReCon Montreal
2011, SummerCon New York 2011)

• Developing the “Practical ARM Exploitation” training

• Building ARM exploitation development environments

• “Advanced ARM exploitation techniques”

• ROP on ARM

• Stack Flipping

• Our neat new research (hardware techniques, USB and bus
fuzzing, our newest work: The “Osprey” hardware device)

Talk Outline
•Some of this talk given at Breakpoint
2012, and Infiltrate 2013

•“Hardware Hacking for Software
People” (ReCon Montreal 2011,
SummerCon New York 2011)

•Some completely new research we will
not release publicly (some new stuff for
NoSuchCon Paris 2013)

How it all started...

This stuff looks
cool...what the hell is

it?

Chips speak to each other
with standard protocols!

•Simple standard serial protocols are often used!

•YOU MEAN TO TELL ME CHIPS USE SERIAL!? YES!!

• RS-232, i2c, spi, Microwire, etc

•Serial comms have low pin-counts (some as low as one
wire)

•Found in: EEPROM, A2D/D2A convertors, LCDs,
temperature sensors, which means EVERYTHING!

•Parallel: (hardly ever) requires 8 or more pins.

Where we found these
hardware interfaces.

• Analog to Digital Convertors. Found in:

• batteries, convertors, temperature monitors

• Bus Controllers. Found in:

• telecom, automotive, Hi-Fi systems, in your PC, consumer electronics

• Real Time Clock/Calendar. Found in:

• telecom, consumers electronics, clocks, automotive, Hi-Fi systems,
PCs, terminals

• LCD/LED Displays and Drivers. Found in:

• telecom, automotive, metering systems, Point of Sales, handhelds,
consumer electronics

• Dip Switch. Found in:

• telecom, automotive, servers, batteries, convertors, control systems

What Uses it?

How I’ve found it useful:
•Routers

•BlackBox Hardware PenTests

•HDMI (HDCP protocol)

•VGA (DDC/CI protocol)

•EEPROM

Our Target:
A VERY common cablemodem in the
United State that uses a Broadcom

chipset

What to look at first?

Hey what are those
pins?

Logs of it booting!!!

ECOS Real Time Operating System!

After fuzzing, the bugs begin to
show!

Crashes!!!
in the HTTP

server (thttpd)

Bug in built-in HTTP server.
Stack Overflow... MIPS

exploitation

Now that we have
crashes? What next?

Time to get good at
Reverse Engineering
ARM and Exploitation.

My machines are x86,
where do we start with

ARM?

The First Lab: QEMU

• Got comfortable with GDB

• We got familiar with ARM architecture and idiosyncracies

• We developed our techniques and tools for writing
Assembly Code and Shellcode on ARM

• We got familiar with how Interactive Disassembler (IDA)
examined ARM binaries

Using QEMU we got familiar with
ARM:

• Basic Stack Overflows

• Stack Overflows with Return-To-LibC

• Stack Overflows with “No Execute Stack” (XN)

• Advanced Stack Overflows with XN

• Heap Overflows

• Heap Overflows with “No eXecute (XN)” protection

We wrote vulnerable apps and
developed our exploitation

techniques

But we wanted
more...we wanted real

hardware ARM!

• Almost every cellphone is ARM!

• Android phones are little ARM linux computers

• None of these systems are “Developer Friendly”

• We can not easily run our many tools on them:

• languages like Lua and Python

• shells

• GNU Utilities, compilers, etc.

Finding a hardware ARM
Platform

Finding a “developer friendly”
hardware ARM Platform

• There are many “open” ARM platforms:

• Raspberry Pi

• BeagleBoard

• ARMini

• CuBox, etc

• We tried many many systems, and ran into many
many problems with building custom Linux
distributions with adequate hardware support.

• After a lot of trouble, we decided on GumStix platform, it
met our needs the best (although slightly expensive :-)

Finding a “developer friendly”
hardware ARM Platform

• Ported the exploits, shellcode, and payloads to our new
hardware platform.

• Updated the Linux distribution image MANY times for “remote”
access

Moving from emulation to “bare
metal hardware” development

The hardware

The “Lackluster Hack Cluster”

• We collected all of our exploitation tests and exploits into a
single image we could use for reference.

Moving from emulation to “bare
metal hardware” development

The Lab Exercises

Word got out...

•Contacted by:

•Companies that needed training on ARM
exploitation

•Companies that needed ARM reverse engineering
and software exploitation work

•many others with products (vested interest) in
understanding ARM exploitation

So we did a few contracts:
• Penetration testing of many “black box devices”:

• Smart Power Meters, “Set top boxes”, new experimental
devices, new “secret” mobile devices from cellphone
manufacturers

• We privately have developed techniques for exploiting
software running on ARM

• Wrote exploits for all the above (Android, Windows 7
Mobile, Linux, etc)

• Developed course material to get this information out.

Developing the Course:
• Prepared our techniques so that we could publicly release

them:

• Finding new ROP gadgets on our custom ARM Linux
distribution and Android.

• Developing “user friendly” software exploitation examples.

• Developing “Rop Library” (with examples) which includes
35+ gadgets to build payloads with.

• “Filled in the Blanks” with additional information on IDA,
GDB, linking and loading, shellcoding.

What’s in our course:
• 3 to 5 Days

• 650 - 900 Slides in (15 lectures)

• 20 “Hands On” exploitation exercises on the ARM
hardware

• 100 Page Lab Manual with Lab Exercise questions and
detailed notes

• ARM Microprocessor Architecture Notes

• Many tools developed by us (C and Python libraries/
programs) to assist with reversing and exploitation.

What our course teaches for
Linux and Android

• How to reverse engineer ARM binaries with IDA (IDA bugs)

• Debugging ARM binaries with GDB

• Exploiting Stack Overflows

• Defeating Stack Overflows with “No Execute Stack” (XN)

• Exploiting Advanced Stack Overflows with XN

• Exploiting Heap Overflows

• Heap Overflows with “No eXecute (XN)” protection

• Defeating ASLR

The Course Listing
• How to reverse engineer ARM binaries with IDA (IDA bugs)

• Debugging ARM binaries with GDB

• Exploiting Stack Overflows

• Defeating Stack Overflows with “No Execute Stack” (XN)

• Exploiting Advanced Stack Overflows with XN

• Exploiting Heap Overflows

• Heap Overflows with “No eXecute (XN)” protection

• Defeating ASLR

How the course has been going:

• We are AMAZED. A course like this has never been offered

• It sold out at Blackhat in the first two weeks.

• It SOLD OUT at CanSecWest 2012.

• It SOLD OUT at Blackhat Las Vegas 2012.

• MANY requests for private engagements of the course.

CanSecWest

BlackHat 2012

What does all this
research and the

popularity of our course
teach us?

We are in the “Post PC”
threat environment.

The world is changing...”The Post-PC
Exploitation Environment”:

• Why would hackers bother with your PC when there is a
GPS tracking device connected to a microphone always in
your pocket?

• We trust our phones and mobile devices more than our
computers and attackers know this.

• ARM Exploitation is fun and much easier than people think.

• Bugs are being found in everything from SMS messages in
your iPhone to the DVR you watch Netflix on. All of these
devices use ARM processors

Some Interesting Bits
from the Course:

Some Interesting Bits
from the Course:

ROP on ARM
(defeating XN, code-signing, et al.)

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

Why bother with ROP?• XN
– “Execute-Never”
–Allows virtual addresses to be marked with or without execute
permission
– If the CPU ever attempts to fetch an instruction from a virtual
address without execute permission, it raises an exception
(typically, delivers SIGSEGV to the offending process)
–Therefore, an exploit must direct PC towards valid executable
addresses
• Virtual address is marked executable by the operating system
• Address must contain valid ARM/THUMB machine code

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

Why bother with ROP?
• Code-Signing
–Some platforms verify that executable memory
segments contain a valid digital signature
–Measure is primarily a method of protecting
revenue stream for application stores
–Therefore an exploit must redirect PC to valid
executable addresses
• It is not possible to have a “ret2libc” attack that calls
“mprotect()” or equivalent to re-protect virtual
addresses with executable page permissions

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

ROP: General Technique
• General technique
– Find a number of “gadgets”

• A few instructions, ending in an indirect branch (pop {pc}, blx r3, etc)
• Typically, obtains values and branch targets from memory relative to SP

– Place these gadgets, one after the other, onto the call stack
• Such as via stack overflow vulnerability

– The “gadget chain” will constitute a computer program (a “return-oriented”
program)

– Profit!
• Allocate writeable, executable memory and copy shellcode into it
• Re-protect existing virtual address space as executable and jump into it
• Create a socket, connect out, and establish a reverse shell
• Read contents of contacts list and send it to a remote serve via HTTP
• Really, you can create just about any computer program by using lots of gadgets on the
stack

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

Ret2libc, Bouncepoints, and ROP
• One of our gadgets from early in the class:
–libc + 0x000918DC: POP {R0,R1,R2,R3,R12,LR};
BX R12
–Loads R0-R3 with values from the stack
–Branches to a function
–Initializes LR to return somewhere

• On ARM, it’s really impossible to do any
ret2libc without the use of a “bouncepoint”
aka “gadget”

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

ROP: Example mprotect() call
• Goal: Use mprotect() to re-protect the
stack as executable, and jump into it

SP Offset Value Description
00000000 400b08dc POP {R0,R1,R2,R3,R12,LR}; BX R12
00000008 bdffd000 R0: Page-aligned stack address
0000000c 00002000 R1: Length to mprotect
00000010 00000007 R2: PROT_READ|PROT_WRITE|PROT_EXEC
00000014 deadbeef R3: Unused value for R3
00000018 400abf90 R12: Address of mprotect()
0000001c bdffd100 LR: Address of the stack

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

ROP: Example mmap() + memcpy()
call

• Goal: Use mmap() to allocate writeable, executable
memory. Copy shellcode to this buffer. Jump to the buffer.

• Step 1: call mmap, with that gadget that is useful for
making function calls

• Step 2: call memcpy. It’s destination address should be the
buffer we just mmap’d, it’s source address should be the
contents from R6 (we know, via gdb, that R6 happens to
point to our shellcode buffer at time of exploit).

• Step 3: jump into the buffer

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

ROP: Example mmap() + memcpy()
call

• Goal: Use mmap() to allocate writeable, executable
memory. Copy shellcode to this buffer. Jump to the buffer.

• Step 1: call mmap, with that gadget that is useful for
making function calls
– WAIT! mmap takes 6 arguments, not just 4
– mmap(addr, len, prot, flags, filedes, off)
– We can’t just use R0-R3 for its arguments!

• Step 2: call memcpy.
• Step 3: jump into the buffer

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

ROP: Example mmap() + memcpy()
call

• Goal: Use mmap() to allocate writeable, executable
memory. Copy shellcode to this buffer. Jump to the buffer.

• Step 1: call mmap, with that gadget that is useful for
making function calls

• Step 2: call memcpy. It’s destination address should be the
buffer we just mmap’d, it’s source address should be the
contents from R6 (we know, via gdb, that R6 happens to
point to our shellcode buffer at time of exploit).
–WAIT! How do we “pass” R6 as the “source” address for memcpy
(the 2nd argument)? (How do we move R6 into R1? How can we
do so while ensuring R0 contains the address returned by
mmap?)

• Step 3: jump into the buffer

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

ROP: Moving R6 to R1, without changing R0
• After searching and searching, we find the following

gadgets…
Location Disassembly

libc + 0x000a82d2

LDMIA.W R3, {R0, R1, R2, R3}
STMIA.W R4, {R0, R1, R2, R3}
B.N 0xA82A4

0xA82A4:
MOV R0, R5
POP {R4, R5}
BX LR

libc + 0x000a82d4

STMIA.W R4, {R0, R1, R2, R3}
B.N 0xA82A4

0xA82A4:
MOV R0, R5
POP {R4, R5}
BX LR

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

ROP: Moving R6 to R1, without changing R0
• After searching and searching, we find the following

gadgets…
Location Gadget

libc + 0x0001bd4c MOV R0, R6
POP {R4, R5, R6, PC}

libc + 0x00035d1e
LDR LR, [SP], #4
ADD SP, #12
BX LR

libc + 0x0004c9cc POP {R4, PC}

libc + 0x000b31c8 POP {R3, PC}

libc + 0x0001f39c POP {PC}

libc + 0x000a6a40 MOV R3, R0; BX LR

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

ROP: Moving R6 to R1, without changing R0
• Step 1: Load a good return address into LR
• Step 2: Load a fixed memory address ALPHA+8 into R4
• Step 3: Load a good return address (POP {PC}) into LR
• Step 4: Save R0 (mmap’d address) o the address at R4
• Step 5: Load a fixed memory address ALPHA into R3
• Step 6: Load a fixed memory address ALPHA into R4
• Step 7: Load/save R2 from the address at R3/R4 (effectively moving the old
mmap’d address into R2)

• Step 8: Move R6 into R0
• Step 9: Load a fixed memory address ALPHA+4 into R4
• Step 10: Save R0 into the address at R4
• Step 11: Load a fixed memory address ALPHA into R3
• Step 12: Load a fixed memory address ALPHA into R4
• Step 13: Load/save R1 and R3 from the address at R3/R4
• Step 14: Move R3 into R0

...later that day...after
much toil...

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

(Some time later)
400b08dd – pop {r0-r3,r12,lr}; ...
00000000
00001000
00000007
00000022
400abec0 – mmap()
400af78b – add sp, #12; pop {pc}
ffffffff
00000000
00000000
40054d1f – ldr lr, [sp], #4; ...
4003e39d – pop {pc}
41414141
41414141
41414141
4006b9cd – pop {r4, pc}
40100530
400c72d5 – stmia r4, ...
40100528
deadbeef
400d21c9 – pop {r3, pc}
40100528
400c72d3 – ldmia r3, ...
deadbeef

deadbeef
4003ad4d – mov r0, r6; pop ...
4010052c
deafbeef
deadbeef
40054d1f – ldr lr, [sp], #4; ...
4003e39d – pop {pc}
41414141
41414141
41414141
400c72d5 – stmia r4, ...
40100528
deadbeef
400d21c9 – pop {r3, pc}
40100528
400c72d3 – ldmia r3, ...
deadbeef
deadbeef
400c5a41 – mov r0, r3; pop {pc}
4005e033 – pop {r2, pc}
00000100
40075750 – memcpy()
400874bd – bx r0

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

Uhhhh.......this is hard.

• This is getting a little complicated
•Manually stitching together “gadgets” onto
the stack is error-prone and confusing
• Is there a better way?

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

exploit_help.py
• Python classes to make it easier to construct return-oriented
programs

• 35+ ARM Linux Gadgets
–Loading General Purpose Registers
–Calling from registers
–All the gadgets you need to call virtually any function with
any number of arguments.
–Students use this to build write the payloads that defeat
ASLR, NX, for a full connect-back rootshell (on the last
day)

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

exploit_help.py: Example

• NEXT_GADGET
gc = GadgetChain([
 LOAD_AND_BRANCH_TO_LR(junk = ’A’*12),
 RET(),
 LOAD_R4(r4 = 0x40020800),
 SAVE_SCRATCH_REGS(r4 = 0xdeadbeef, r5 = 0xdeadbeef),
 NEXT_GADGET(),
 WORD(0x40020800)
])
exploit = exploit + gc.pack()

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

ROP on ARM Magic:
“Misaligned Instructions”

•Why don’t we have “POP {R0, PC}”?
• Because NOWHERE in the entire libc
binary does this instruction sequence
exist. So we had to settle for “POP {R0,
R2, PC}”
• But, take a look at the address of our POP
{R0, R2, PC} gadget in IDA Pro…

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

ARM has many
instruction modes

68

• Recent ARM processors (e.g., ARMv7) support a
number of instruction modes.

• Like most RISC architectures, ARM instructions
are fixed width and must be properly aligned.

• Mode determined by the high bit of the
instruction being executed. (TFlags $cpsr.t)

• This means “on the fly” mode switching! Hmm!

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

ARM Mode

69

• 32-bit instruction fixed-width and alignment

• Generally the most “featureful” of instruction modes

• Transitioned into by executing the following
instructions that load the PC with the instruction set
selection bit (the low order bit) cleared: BX, BLX, LDR,
or LDM. As ofARMv7 this also includes: ADC, ADD,
AND, ASR, BIC, EOR, LSL, LSR, MOV, MVN, ORR,
ROR, RRX, RSB, RSC, SBC, or SUB.

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

THUMB Mode

70

• 16-bit instruction fixed-width and alignment

• Slightly less functionality than ARM mode instructions
(e.g., many 16-bit instructions can only access R0-R7)

• THUMB-2, introduced in 2003, allows for 32-bit
instructions aligned on 16-bits and greater functionality
when in THUMB mode

• Transitioned into by executing the following
instructions that load the PC with the instruction set
selection bit (the low order bit) set: BX, BLX, LDR, or
LDM (aka POP). As ofARMv7 this also includes: ADC,
ADD, AND, ASR, BIC, EOR, LSL, LSR, MOV, MVN,
ORR, ROR, RRX, RSB, RSC, SBC, or SUB.

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

ThumbEE Mode

71

• Similar to THUMB mode, but contains various
extensions to support run-time generated code (JIT
code)

• Transitioned into or out of via the ENTERX and
LEAVEX instructions

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

Jazelle Mode

72

• Allows for native execution of Java bytecode

• Transitioned into via the BXJ instruction

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

• I don’t see a POP {R0, R2, PC} there at all
• But wait a minute…

ROP on ARM Magic:
“Misaligned Instructions”

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

• If we undefine the instruction at 3850C
we see the bytes FD F7 05 BD
•What’s “05 BD” in THUMB?

ROP on ARM Magic:
“Misaligned Instructions”

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

•Wow, it’s POP {R0, R2, PC}!
• This is common in ROP, taking advantage
of addressing offsets to create
“unintended” opcode sequences

ROP on ARM Magic:
“Misaligned Instructions”

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

Some ROP Tricks we teach: #1
• Goal: Read or write from scratch space
• Problem: We don’t know what address to use for
reads/writes of memory.
• Solution: Just use a bukakheap’d address, or use
the .data/.bss section of libc.
–Specifically, the .bss section of libc ends at offset
0xe1528 from the start of the binary
–But pages must be allocated as multiples of the
PAGE_SIZE (4096)
–Meaning 0xe1528 ‒ 0xe2000 is perfect “scratch space”
as it is unused by libc

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

• Goal: Move the value in R2 into R1 (or R3
into R2 or R1 into R3, etc.)
• Problem: There are no gadgets to move
values in volatile registers to each other.

Some ROP Tricks we teach: #2

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

• Solution:
– Use staggered

scratch address to
write (for example)
R2

– And then read from
that address minus 4,
thereby transferring
the value to R1

Gadget Chain Stack Layout

LOAD_R4: POP {R4, PC}

Scratch Address -> R4

SAVE_SCRATCH_REGS_BOUNCE -> PC

SAVE_SCRATCH_REGS: STMIA R4…

Scratch Address – 4 -> R4

deadbeef -> R5

LOAD_R3 -> PC

LOAD_R3: POP {R3, PC}

Scratch Address – 4 -> R3

RESTORE_SCRATCH_REGS -> PC

RESTORE_SCRATCH_REGS: LDMIA R3…

deadbeef -> R4

deadbeef -> R5

Address of next gadget

Some ROP Tricks we teach: #2

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

• Goal: We want to write an ASCII string (or
other data structure that is not merely 4
32-bit words) to somewhere in memory
• Problem: The gadget to write to memory
(SAVE_SCRATCH_REGS) only works with
32-bit register values

Some ROP Tricks we teach: #3

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

• Goal: We want to write an ASCII string (or
other data structure that is not merely 4
32-bit words) to somewhere in memory
• Problem: The gadget to write to memory
(SAVE_SCRATCH_REGS) only works with
32-bit register values
• Solution: Just use SAVE_SCRATCH_REGS
in exploit_help.py

Some ROP Tricks we teach: #3

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

H E L L O W O R L D ! \n
48 45 4C 4C 4F 20 57 4F 52 4C 44 21 0A 00 00 00
4C4C45484C4C45484C4C45484C4C4548 4F57204F4F57204F4F57204F4F57204F 21444C5221444C5221444C5221444C52 0000000A0000000A0000000A0000000A
R0R0R0R0 R1R1R1R1 R2R2R2R2 R3R3R3R3

• Just visualize the data structure or string as individual byte values
• Convert those byte values to 32-bit numbers (remember, because of little-
endian encoding you have to do byteswapping when representing them as
numbers)

• Put the first 4 bytes into R0, as a little-endian number
• The second 4 bytes into R1, as a little-endian number
• Etc.

Some ROP Tricks we teach: #3

Some More Interesting
Bits from our Course:

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

ROP and Stack Overflows
• ROP – Return Oriented Programming
–Sequence of gadgets placed on the stack
–Takes advantage of existing opcode sequences
to bypass XN or similar technology to prevent
execution of stack/heap data
–Obviously applicable in stack overflows
• Overflow call stack with data
• Overwrite “Saved LR” with address of your first gadget
• Call stack contains a chain of gadgets that can be
returned to, one after the other, because it was placed
there by the overflow

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

ROP and Heap Overflows
• ROP – Return Oriented Programming
–Obviously applicable in heap overflows?
•Use WWW, WMW, vtable overwrite, etc. to execute
your first gadget
•Call stack contains ... a chain of gadgets?
–No, it won’t obviously, we are exploiting a heap overflow
–Our chain of gadgets or ROP is on the heap somewhere
–We have no control of the call stack at all!!

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

ROP and Heap Overflows
• ROP – Return Oriented Programming
–Obviously applicable in heap overflows?
•Use WWW, WMW, vtable overwrite, etc. to execute
your first gadget
•Call stack contains ... a chain of gadgets?
–No, it won’t obviously, we are exploiting a heap overflow
–Our chain of gadgets or ROP is on the heap somewhere
–We have no control of the call stack at all

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

What if there’s nothing on the
stack?

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

THE ANSWER: PIEVUTS!

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

What if there’s nothing on the
stack?

• If there is data we control on the stack we can
execute ROP with a heap overflow

• What if there really is nothing on the stack?
–Maybe we could copy data from the stack to the heap
• For example, our bouncepoint is a gadget that copies data from

R2 onto SP and then returns
• Doable, but consider your experience with gadgets. To do

something as simple as this usually requires several gadgets on
the stack, and we only control one function pointer

–Maybe we could move the address of the heap into SP and
return. That is, we have to “flip” the heap into becoming
the call stack
• Back when ROP was not a publicized technique, this was called

“writing an exploit”
• Now we have a special name for it and it is called “pievutting”

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

ROP and Heap Overflows
(when nothing’s on the stack)

trigger
frame

Call Stack Heap

Free Chunk(s)

vuln calls oobj->virtual_function

vuln frame VulnObject

Free Chunk(s)

OverwrittenObject

overflow

SP

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

ROP and Heap Overflows
(when nothing’s on the stack)

trigger
frame

Call Stack Heap

Free Chunk(s)

vuln calls some magical bouncepoint… and then we PWN?

vuln frame VulnObject

Free Chunk(s)

OverwrittenObject

overflow

SP

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

Not so fast…
• AWESOME! So we can easily PWN heap overflows now!
• But…
– You are probably never going to find MOV SP, R0 in compiled

code
– Think about it, how often does a compiler move a register

into SP?
• Adding and subtracting to SP occurs all the time…
• … only time you’d move a value into SP is to restore SP from a stack

frame register
• gcc (at least) almost always uses R7 for the frame register
• Unlikely that a volatile register like R0 would ever be used for this

purpose
–What about “mis-aligned” instruction sequences?
• Could definitely get us the MOV SP, R0
• But, not in the libc.so binary on your QEMU VM’s…

http://www.dontstuffbeansupyournose.com
S.A. Ridley S.C. Lawler

Flipping R7?

• R7 as frame register?
–libc + 0x0004C652
• MOV SP, R7; POP {R4, R5, R6, R7, R8, R9, R10,
PC}

–Restores SP from the “frame register” in R7
–But what if the function we’ve exploited
doesn’t have a frame register?
–If it happened to store “our data” in R7, we
could use this as our “pievut”

http://www.dontstuffbeansupyournose.com
S.A. Ridley S.C. Lawler

Flipping R7?
• Flipping R7 into SP
–Nice, if R7 happens to point to some data we
control
–But think about it. There are FIFTEEN registers
on ARM. What is the likelihood R7 points to
our data?
–We’d rather be able to use R0 as our pivot
because R0 will always point to data we
control (at least for vtable overwrites)

http://www.dontstuffbeansupyournose.com
S.A. Ridley S.C. Lawler

Flipping R0?
• So we scan through libc looking for
“pievuts” and we eventually luck into…
–libc + 0004f94c

•Wait what???

http://www.dontstuffbeansupyournose.com
S.A. Ridley S.C. Lawler

Flipping R0?
• Let’s see what happens if the processor
executed that instruction in ARM mode
instead of THUMB…

http://www.dontstuffbeansupyournose.com
S.A. Ridley S.C. Lawler

Flipping R0?
• Let’s spell LDMDB R0!, {R6,R12-PC} out
• It means:
–LDMDB R0!, {R6,R12,R13,R14,PC}
–LDMDB R0!, {R6,R12,SP,LR,PC}

• Thank goodness for ARM/THUMB mode
switching!

http://www.dontstuffbeansupyournose.com
S.A. Ridley S.C. Lawler

Flipping R0?
• What does LDMDB R0!, {R6,R12-PC} do?
–LDMDB – Load Multiple Decrement Before
–R0 will be subtracted by 0x14 first and then
registers are loaded
•R6 loaded from original R0-0x14
•R12 loaded from original R0-0x10
• SP loaded from original R0-0x0C
• LR loaded from original R0-0x08
• PC loaded from original R0-0x04

http://www.dontstuffbeansupyournose.com
S.A. Ridley S.C. Lawler

Flipping R0?

But what do we put in to SP?
What address to use?

http://www.dontstuffbeansupyournose.com
S.A. Ridley S.C. Lawler

Flipping R0?

But what do we put in to SP?
What address to use?

USE BUKAKHEAP!!!

ARM Exploitation meets
Hardware Exploitation

New Sh*t
(*DJ Clue voice*)

Interfacing with the
Hardware:

Debuggers and the
JTAG myth

JTAG on the baseband
JLink

Hardware Challenges
Interfacing with custom hardware

What is that!?

Custom Interface
Complete

Time to connect
debugger

Time to connect
debugger

Attacking the Hardware:
Stealing the Firmware

Sometimes you get
schematics...and
firmware source...

Most times you DON’T...

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

• Depending on the MCU you are pulling you will get:

• EEPROM image

• Cramfs Filesystem

• Ext Filesystem

• Etc.

• “Bare Metal” Executable Image

Pulling the Firmware

• Some useful firmware analysis tools:

• Binwalk (https://code.google.com/p/binwalk/)

• In my experience there will be some element of
manual analysis

• searching for known bytes

• finding entry

• general fighting with IDA

Parsing executable images

Building Custom
Hardware Interfaces:

(debuggers)

Building Custom
Hardware Interfaces:

Power

Xeltek

Beagle 5000 USB
protocol analyzer

BK Precision 0-60Amp
Lab Power Supply

BK Precision 0-60Amp
Lab Power Supply

Multiple variable terminals

Spying On
Communications

More on this in our “Hardware Hacking

for Software People” talk.

Xeltek

Beagle 5000 USB
protocol analyzer

BK Precision 0-60Amp
Lab Power Supply

Attacking the Software

Attacking the Software
REpurposing old tools: PFI Port Forwarding

Interceptor

Apple USB

•As a software iOS developer, you can’t just
write code that talks to custom hardware
using the 30-pin Doc

Vendors with custom hardware have to go
through MFI

Remember that STM
MCU?

Many MCU OEMs will provide
developer libs

•STM provides iAP libraries for STM developers

•regular “C” libraries for communicating with
iAP-enabled devices.

•a packet parsing/building library

•Disambiguation:

•iAP = iPod/iPhone Accessory Protocol (iAP)

•*not* in-application-programming

USB Host/Device in MCUs
•iAP is just the device protocol not FULL USB
implementation

•Most companies will NOT write their own USB
stack.

•instead they will license a USB stack from
companies

•Companies like: HCC Embedded

•The HCC stack is used (via API) to embed in
software running on MCUs

USB Host/Device in MCUs

USB Host/Device in MCUs
•iAP stack will then sit on top of a embedded
USB implementation

•In a “bare metal” executable image this means
a large source base that you can just audit

•As API/includes in a monolithic executable,
parser bugs in the USB implementation mean
code execution on the ARM core....

•Now we’ve come full circle on ARM
Exploitation

Project “Osprey”:
I made a thing you might

like

Travis Goodspeed’s FaceDancer
Awesome tool...

requires assembly

\

Project “Osprey”:
ASSEMBLY IS A BARRIER
TO ENTRY for many of us,
SO NO ASSEMBLY PLZ!

Project “Osprey”
• Goal: Build a hardware, firmware, and PC/Mobile based

software platform to enable the creation of consumer
product

• Features:

• Built in RF capability (Zigbee, Mesh Networking, etc)

• Onboard EEPROM and MicroSD Card (for storage)

• Programmable, low-cost, and low-power

• Serial interface to PCs and Mobiles (via onboard
controller)

• Expandable (via mezzanine riser connections to our
daughter boards (SPI, I2C, UART, GPIO, etc.)

Project “Osprey”
• First Incarnation: A Consumer hardware physical security

device interfacing with your cellphone

• Also: Hardware encryption device for mesh networked
communications and an encryption/storage “backpack” for
your mobile device

• For researchers:

• A fully assembled attack platform for RF devices: NFC,
SimpliciTI, Zigbee/802.15.4, etc.

• A fully assembled attack platform for USB devices (as
DEVICE and host.)

Project “Osprey”:
Features for Researchers

• No Assembly

• Buy the one you want with the firmware you need for
your project.

• It just works out of box

• You can program it if you want to...

Project “Osprey”• Hardware will be “closed” but...

• can be re-purposed as a hardware platform for “low-level”
security research (subsidized by it’s use as consumer prod)

• FEATURES FOR RESEARCHERS:

• Access to Tag Connect Programming Interface

• Various “versions” via firmware builds

• USB device-host interface (for fuzzing)

• “Bus Pirate” replacement (UART, i2C, SPI, maybe
JTAG)

• A fully assembled attack platform for RF devices: NFC,
SimpliciTI, Zigbee, etc.

• A fully assembled attack platform for USB devices (as

Project “Osprey”: Features For Researchers

Tag-Connect low
profile programming

interface

Onboard MicroSD

Project “Osprey”: Features For Researchers

“Mezzanine”
connector to

Osprey Daughter
boards

Project “Osprey”: Features For Researchers

Power switchable
between battery
pack (2 Triple A’s)
and BusPowered

USB

As evidenced by big ugly switching
convertor ;-)

Project “Osprey”: Features For Researchers

Two Onboard Antennas
ceramic on-board

and SMA for screw-on

Project “Osprey”: Features For Researchers

PC interface via UART-
over-USB (FT232RQ)

Project “Osprey”
• How soon until you can get one?

• Several milestones first:

• Focusing on release to consumer (and one private
industry application for a customer)

• Currently in Hardware Rev-A but Osprey Rev-B
expected in the next two months (hardware fixups and
and additions, example: MAX3453E)

• First production run of Rev-B (of more than 100 units)
in July.

• Already plans for a Rev-C which may or may not
include an ARM core (via PD-07 mezzanine)

Conclusions & Take-Aways
• The world is changing, we are entering (if not already in) a

“post-pc” exploitation environment.

• ARM shellcoding and exploitation is fun! Easier that people
think

• ROP on ARM actually yields many useful an interesting
gadgets because of the mixed instruction modes

• NX as well as all of the modern protections on both Linux
and Android can be bypassed with nuances of the ARM
Microprocessor.

• “Hardware Hacking” is real and not as hard as we think...

• Custom hardware devices like “Osprey” will make this
more accessible...

“Advanced Software
Exploitation on ARM”
http://www.dontstuffbeansupyournose.com

Stephen A. Ridley: @s7ephen
ridley@dontstuffbeansupyournose.com

THANKS FOR LISTENING!!!!!

