
© 2013 The MITRE Corporation. All rights reserved. For internal MITRE use

J o h n B u t t e r w o r t h
C o r e y K a l l e n b e r g
X e n o K o v a h

BIOS Chronomancy:
Fixing the Static Root of
Trust for Measurement

| 2 |

Introduction

§ Who we are:
–  Trusted Computing researchers at The MITRE Corporation

§ What MITRE is:
–  A non-profit company that runs six US Government "Federally

Funded Research & Development Centers" (FFRDCs)
– We also do a lot of standards work such as CVE, CWE, etc

| 3 |

Motivation

§ Why:
–  Attackers will seek to reach the highest privilege levels and/or the

same privilege levels as the defender
– We believe that access controls can always break down
– We believe that BIOS Chronomancy is capable of detecting an

attacker even when other access controls have broken down
§  Is it perfect? Sadly not yet, but we keep making it better

– We believe this is a technology worthy of further exploration
– We hope to inspire others to carry the torch and explore further

| 4 |

Outline

§ How the foundation of trusted measurement is rooted in
firmware

§ We will show that when this trust fails: really (really!) bad things
can happen
–  and we’ll prove it

§ We will introduce BIOS Chronomancy, a technology capable of
detecting an attacker who has achieved equal privileges

§ We will show you the results of tests we performed using BIOS
Chronomancy running in System Management Mode

| 5 |

Terminology

§  Trusted Platform Module (TPM)
–  Supports secure key generation and secure key storage.
– Can “seal” keys or data such that they can only be decrypted if the

PCR set hasn’t changed.
– Can act as a root of trust for reporting by signing a quote of its

current PCR set.
§ Platform Configuration Register (PCR)

–  Store 20 byte hashes representing measurements of the system.
–  Are reset to 0x0020 upon reboot.
– Can only be modified with an “Extend” operation.
–  Extend_PCR0(data): PCR0new = SHA1(PCR0old || SHA1(data))

| 6 |

Terminology Continued

§  Trusted Boot
–  A TPM supported boot of the system where each component in the

boot up process (BIOS, Option ROMs, MBR) are supposed to be
measured into PCRs before control is passed to them.

§ Static Root of Trust for Measurement (SRTM)
–  The anchor in the Trusted Boot chain.
– Responsible for measuring itself and other parts of the BIOS.
–  PCR0 holds the measurement of the SRTM.

| 7 |

All roots of trust are not created equal

Base diagram from
http://www.intel.com/content/dam/doc/white-paper/uefi-pi-tcg-firmware-white-paper.pdf

Tarnovsky attacks

Our attacks

PCRs

| 8 |

BIOS Acquisition

§ Method 1: Obtain the BIOS ROM from manufacturer

§ Dependent on manufacturer
– May not provide straight-forward method to obtain the actual ROM

image
– Dell, for example, no longer provides this handy feature.

| 9 |

BIOS Acquisition

§ Method 2: Read it from the BIOS chip using software

§ Write your own if you
want to learn the
architecture very well

§  Time consuming (but
fun and educational)

§  Linux app with iopl()
also works well, better
for testing

| 10 |

BIOS Acquisition

§ Method 3: Read it from the BIOS chip using hardware

§  Turned out to actually be a requirement …
§ Not necessarily easy to get at the BIOS chip

| 11 |

BIOS Analysis: Arium CPU Debugger FTW!*

*Some [dis]assembly required.

| 12 |

Q35 Express Chipset

SPI Flash

System RAM

BIOS Region Begin

0 4GB

www.intel.com/.../datasheet/io-controller-hub-9-datasheet.pdf

| 13 |

Normal E6400 boot sequence 1

Boot Block

SPI Flash

System RAM

Configuration

 Modules …

FFFF_FFF0

SMRAM

0 4GB

BIOS Region Begin

| 14 |

Normal E6400 boot sequence 2

Boot Block

SPI Flash

System RAM

…

hashing

TCG Measure (SRTM)

SMRAM

0 4GB

PCR0=SHA1(020 | hash)

| 15 |

The Problems with PCRs

§ Opaqueness
– No golden set of PCRs is provided by the OEM.
– No description of what is actually being measured and

incorporated into the PCR values.1

– Homogeneous systems can have different PCR values.2
– Duplicate PCR values are unexpected…

1.  The TCG specification gives vague guidelines on what should be incorporated into individual PCR
values, and many decisions are left to the vendor.

2.  Based on our own observation of PCR values across various systems.

■ Example E6400 PCR Set

| 16 |

E6400 PCR0 (SRTM) Measurement

§ PCR0 should contain a measurement of the SRTM and other parts
of the BIOS.

§  In the above diagram, the dark areas represent what the E6400
actually incorporates into the PCR0 measurement.

§ Only 0xA90 of the total 0x1A0000 bytes in the BIOS range are
incorporated, including:
–  The first 64 bytes of the 42 compressed modules.
–  Two 8 byte slices at 0xDF4513C0 and 0xDF4513C8.
–  The SRTM is not incorporated at all.

*BIOS Base is located at FFE6_0000

| 17 |

Implications of the weak PCRs

§  We can modify the majority of the E6400 BIOS
without changing any of the PCR values.

§ Yuriy Bulygin made a similar discovery at
CanSecWest 2013 regarding his ASUS P8P67.

§ But what if we want to modify any part of the
BIOS with no limits?
– Like the splash-screen, or the code that instantiates

SMRAM?

| 18 |

Forging the PCRs

§ We can arbitrarily modify any part of the BIOS while still
maintaining the expected PCR set if we do the following:

1.  Record the expected hashes that the SRTM calculates and

forwards to the TPM for the PCR_Extend operation(s).
2.  Modify the BIOS to prevent the legitimate SRTM from being

called.
3.  Insert your own SRTM which simply replays the aforementioned

“expected” hashes to the TPM.

§  This method maintains a valid PCR set even if the SRTM
incorporates the entire BIOS into the measurement.

| 19 |

BIOS Modification: Access Controls

§  Access Controls
–  Registers which can prevent writes to the BIOS flash*
–  Signed Firmware Updates (per NIST 800-155)

§  Latitude E6400 BIOS revisions:

–  A29 did not protect the flash from direct writes to the firmware flash
from privileged applications
§  A30 and higher do J

–  A29 did not provide an option to require Signed Updates (released
prior to NIST 800-155)
§  A30 and higher do, as well as Dell’s newer systems J

§  However, even Access Controls can fail or be bypassed:

–  In 2009 ITL showed that firmware signing can be bypassed in their
Attacking Intel BIOS presentation.

–  And so have we. We are currently working with Dell to resolve the
vulnerability.

*A detailed discussion about these architectural controls is beyond the scope of this presentation.

| 20 |

Firmware Rootkit Types

§ All firmware malware is resident on the NVRAM firmware and is
therefore persistent

§ Naïve
–  That which can be detected by simply observing PCRs

§  Tick
–  Embeds itself in the firmware
–  Evades detection by forging PCRs
– Once in place, can modify any other portion of the BIOS (even

injecting itself into SMM)

§  Flea (to be discussed shortly)

| 21 |

Normal BIOS PCR0 Measurement

SPI Flash

System RAM

BIOS

S
H

A
1(self)

0xf005b411…

PCR0=SHA1(020 | 0xf005b411…)

0 4GB

| 22 |

PCR0 Measurement with a Tick

SPI Flash

System RAM

BIOS

S
H

A
1(self)

PCR0=SHA1(020 | 0xf005b411…)

0 4GB

| 23 |

Tick Demo Video

| 24 |

The Flea

§ All the same stealth capabilities of the Tick
§ Achieves persistence beyond BIOS re-flashes

–  “Jumps” from one BIOS revision to another

| 25 |

BIOS Firmware
Update

BIOS Firmware
Update

The Flea

SPI Flash

System RAM

BIOS

BIOS update?

Clone!!
Flash!

0 4GB

| 26 |

Flea Demo Video

| 27 |

Countermeasure:
Timing-based attestation

§  The fundamental premise:
–  "Build your software so that if it's code is modified, it runs slower."

§ We coined "timing-based" because it is a superset of the "software-
based" techniques, but using hardware (e.g. TPM) for timing
measurement

§ Meant to replace CRTM, but not reimplement entire SRTM
§  Assumptions:

–  Attacker has complete control of execution environment before self-
checking begins (i.e. same privilege as defender)

–  Self-checksuming code is time-optimal for a given microarchitecture
–  There are no free execution slots where an attacker can insert a "free"

instruction and suffer no timing slowdown
§  There is a decade of work in this area, we can't do the many many

nuances justices. A timeline of related work here:
–  http://bit.ly/11xEmlV

| 28 |

§ Nonce/PseudoRandom Number(PRN)
– Decrease likelihood of precomputation due to storage constraints,

and prevent replay (here only with online SMM-based challenges,
not the boot)

§ Read own data
–  Incorporated into checksum so if it changes the checksum

changes
§ Read own instruction and data pointers

–  Indicates where in memory the code itself is executing
§ Do all the above in millions of loop iterations

–  So that ideally an instruction or two worth of conditional checks per
loop iteration leads to millions of extra instructions in the overall
runtime

Components of all self-checks

| 29 |

Simplified Selfcheck()

Selfcheck(checksum,	 nonce,	 codeStart,	 codeEnd,	 codeSize)	 {	
	 while	 (iteration	 <	 2500000)	
	 {	
	 	 checksum[0]	 +=	 nonce;	
	 	 checksum[1]	 ^=	 DP;	
	 	 checksum[2]	 +=	 *DP;	
	 	 checksum[4]	 ^=	 EIP;	
	 	 mix(checksum);	
	 	 nonce	 +=	 (nonce*nonce)	 |	 5;	
	 	 DP	 =	 codeStart	 +	 (nonce	 %	 codeSize);	
	 	 iteration++;	
	 }	

}	

| 30 |

Simplified Selfcheck() Forgery

Selfcheck_forge(checksum,	 nonce,	 codeStart,	 codeEnd,	 codeSize)	 {	
	 while	 (iteration	 <	 2500000)	
	 {	
	 	 checksum[0]	 +=	 nonce;	
	 	 checksum[1]	 ^=	 DP;	
	 	 if	 (DP	 ==	 myHookLocation)	
	 	 	 checksum[2]	 +=	 copyOfGoodBytes;	
	 	 else	
	 	 	 checksum[2]	 +=	 *DP;	
	 	 checksum[2]	 +=	 *DP;	
	 	 checksum[4]	 ^=	 EIP;	
	 	 mix(checksum);	
	 	 nonce	 +=	 (nonce*nonce)	 |	 5;	
	 	 DP	 =	 codeStart	 +	 (nonce	 %	 codeSize);	
	 	 iteration++;	
	 }	

}	

| 31 | Trusted Platform Module (TPM)
 Timing Implementation (BIOS Boot-Time)
Server	 Client	

Self-‐Check	 (nonce	 =	 signature)	

Signed	 Tickstamp	 1	 &	 2	

Self-‐Checksum	

TPM	

Request	 Tickstamp(hardcoded)	

Signed	 Ticksta
mp	 1	

Request	 Tickstamp(Self-‐Checksum)	

Signed	 Ticksta
mp	 2	

Ti
m
e	

Δt	

BOOT	

Separate	 agent	 requests	 stored	 	
measurement,	 and	 sends	 to	 server	
for	 verificaHon	

BIOS	 Chronomancy	 –	 aLacker	 overhead	 vs.	 clean	 measurement	
18	 E6400s,	 20	 measurements,	 3	 different	 loop	 iteraHon	 counts	

Takeaway:	 If	 you	 only	 do	 625k	 iteraHons,	 occasionally	 the	 aLacker	 wins.	
With	 1.25M	 or	 more	 the	 aLacker	 doesn't	 even	 get	 close.	 32	

| 33 |

SPI Flash

System RAM

BIOS

Is BC perfect? NOPE!

Leap!

Self-check
Done

Gbe LAN

0 4GB

| 34 |

§  There is a paper from CMU named VIPER specifically on
attesting peripheral firmware. We will play with malicious
peripherals & TOCTOU attacks this coming year.

§  Trusted Computing implementations always need independent
review. It's ironic that they're overwhelmingly closed source &
proprietary. (Even academics don't usually post their code for
review!1) We don't want to get a 2.5% measurement and be lead
to believe it's a 100% measurement.

§ As long as the SRTM is implemented in writable firmware, ticks
and fleas will mean that you can't trust your SRTM.
–  And as ITL has shown, DRTM can depend on SRTM

Conclusion

1 Our code for our previous self-check is at http://code.google.com/p/timing-attestation
We're working on getting the modified self-check for BC public released too.

| 35 |

Conclusion deux!

§ We need more people working in this space!
§ You should try your hand at making and breaking

timing-schemes.
§ It's obviously a very challenging and cool problem!

§ Contact us for a private copy of the much more detailed
whitepaper (still under submission for an academic conference)

§  jbutterworth, ckallenberg, xkovah @ mitre.org

§ P.S. To learn more about TPMs go to OpenSecurityTraining.info

| 36 |

References

§  [1] Apokrif. Dell bios, how to decompose/mod, 2010. http://
forums.mydigitallife.info/threads/12962-Dell-bios-how-to-
decompose-mod./page48

| 37 |

Backup slides

| 38 |

E6400 PCR[1-3]

§ PCRs 1-3 should contain configuration and option rom
measurements.

§  Interesting because they are duplicate values.
§ We had also seen this a89fb8f… value on other (non-E6400)

systems.
§ PCR[1..3] = SHA1(0x0020 || SHA1(0x00))

| 39 |

Conditions for TOCTOU

§  1) The attacker must know when the measurement is about to
start.

§  2) The attacker must have some un-measured location to hide in
for the duration of the measurement.

§  3) The attacker must be able to reinstall as soon as possible
after the measurement has finished.

§  It turns out a bunch of the example attacks in the literature are
TOCTTOU without being explicit about it.

§ And it turns out TOCTOU more severely undercuts the
technique than prior work had acknowledged

| 40 |

BIOS Modification: Access Controls

BIOSWE can “always”
be set to make the flash
chip writeable (R/W
attributes!)

BLE, however provides
SMRAM the final say as
to whether or not writes
to the flash will be
permitted.

E6400 version A29 didn't set BLE, A30 did

| 41 |

Coming Soon:
Copernicus – “Question your assumptions”

§ We have a nice standalone tool
§  It dumps BIOS to file
§  It checks configuration registers to see if the BIOS/SMM is

writable
§ We’re interested in investigating the prevalence of unlocked

flash chips
§ Contact us

