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Domain-specific Language

● Domain-specific language (DSL) is a mini-language aiming at 
representing constructs for a given domain

● DSL is effective if the words and idioms in the language 
adequately capture  what needs to be represented

● DSL can also add syntax sugar



  

Why?

Why create a custom tag or an object with methods?

Elegant Code Reuse

Instead of having to recode algorithms every time you need them, you  can just 
write a phrase in your DSL and you will have shorter, more  easily maintainable 

programs



  

Example for DSL's

● Programming Language R
● XSLT
● Regular Expression
● Graphviz
● Shell utilities (awk, sed, dc, bc)
● Software development tools (make, yacc, lex)
● Etc.



  

Typical DSL Powered by Pythonect

Python (Core, Basic Functionality)

Pythonect (Syntax, Logic)

Framework (Domain Functionality)

Execution
Order



  

Pythonect

● Pythonect is a portmanteau of the words Python and Connect
● New, experimental, general-purpose dataflow programming language 

based on Python
● Current “stable“ version (True to May 15 2013): 0.5.0
● Made available under 'Modified BSD License'
● Influenced by: Unix Shell Scripting, Python, Perl
● Cross-platform (should run on any Python supported platform)
● Website: http://www.pythonect.org/

http://www.pythonect.org/


  

A few words on the Development

● Written purely in Python (2.7)
– Works on CPython 2.x, and Jython 2.7 implementations

● Tests written in PyUnit
● Hosted on GitHub
● Commits tested by Travis CI



  

Installing and Using The Pythonect Interpreter

● Install directly from PyPI using easy_install or pip:
– easy_install Pythonect

OR
– pip install Pythonect

● Clone the git repository:
– git clone git://github.com/ikotler/pythonect.git

– cd pythonect

– python setup.py install



Dataflow Programming

Programming paradigm that treats data as something originating
from a source, flows through a number of components and arrives at 
a final destination - most suitable when developing applications that 

are themselves focused on the "flow" of data.



Dataflow Example

A video signal processor which may start with video input, 
modifies it through a number of processing components (i.e. video filters), 

and finally outputs it to a video display.
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Dataflow Example

Want to change a feed from a local file to a remote file on a website? 

No problem!
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Dataflow Example

Want to write the Video B&W Frame Processor output 
to both a screen and a local file? 

No problem!
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Dataflow Programming Advantages

● Concurrency and parallelism are natural
● Data flow networks are natural for representing process
● Data flow programs are more extensible than traditional 

programs



  

Dataflow Programming Disadvantages

● The mindset of data flow programming is unfamiliar to most 
programmers

● The intervention of the run-time system can be expensive



  

Dataflow Programming Languages

● Spreadsheets are essentially dataflow (e.g. Excel)
● VHDL, Verilog and other hardware description languages are 

essentially dataflow
● XProc
● Max/Msp
● ... Etc.



  

<Pythonect Examples>



  

'Hello, world' -> print

String Function



  

What do we have here?

● -> is a Pythonect Control Operator, it means async forward.

● There's also | (i.e. Pipe) which means sync forward.

● 'Hello, world' is a literal string

● print is a function



"Hello, world" -> [print, print]

String

Function

Function



 ["Hello, world", "Hello, world"] -> print

Function

String

String



  

Basic Pythonect Syntax Summary

● -> is async forward.

● | (i.e. Pipe) is sync forward.

● _ (i.e. Underscore) is current value in flow



  

Domain-specific Language with Pythonect

● Pythonect provides various features to let you easily develop 
your own DSLs:
– Built-in Python module Autoloader
– Concurrency (Threads & Processes)
– Abstract Syntax (i.e. Generic Flow Operators)



  

Built-in Python AutoLoader

● The AutoLoader loads Python modules from the file system 
when needed

● In other words, no need to import modules explicitly. 
● The sacrifice is run-time speed for ease-of-coding and speed 

of the initial import()ing. 



  

'Hello, world' -> string.split

i.e.

import string
return string.split



  

Concurrency (Threads & Processes)

● Multi-threading:
– 'Hello, world' -> [print, print]

● Multi-processing:
– 'Hello, world' -> [print, print]

● Mix:
– 'Hello, world' -> [print, print &]



  

Abstract Syntax

● Brackets for Scope:
– [] 

● Arrows and Pipes for Flows:
– | and ->

● Dict and Logical Keywords for Control Flow:
– {} and not/or/and



  

from_file('malware.exe') \
    -> extract_base64_strings \
        -> to_xml

So, imagine the following is a real script:



  

IT IS!
(with Pythonect)



  

Meet SMALL  

Simple Malware AnaLysis Language

● Toy language for analyzing malware samples 
● Single Python file (14 functions, 215 lines of text)
● Runs on top of Pythonect



  

SMALL Features

● Extract IPv4 Addresses from Binaries
● Extract Base64 Strings from Binaries
● Calculate MD5/SHA1/CRC32
● Determine File Type (via /usr/bin/file)
● Create XML Reports



  

How Does SMALL Work?  

● SMALL functions are divided into two groups:
– Root, these functions start a flow
– Normal, these functions continues or closes the flow

● Root functions accept String and return dict
– e.g. from_file() 

● Normal functions accept dict and return dict

– e.g. extract_base64_strings() 



  

<Pythonect/Security DSL (i.e. SMALL) Examples>



  

How to Start the SMALL Interpreter

pythonect -m SMALL -i

● The '-m' means - run library module as a script
● The '-i' means - inspect interactively after running script
● Just like Python :)



  

from_file('malware.exe') \
    -> extract_base64_strings \
        -> to_xml

Function Function

Extract Base64 Strings and Save As XML

Function



  

from_file('malware.exe') \
    -> extract_ipv4_addresses \
        -> to_xml

Function Function

Extract IPv4 Addresses and Save As XML

Function



  

from_file('malware.exe') \
    -> md5sum \
        -> sha1sum \
            -> crc32 \
                -> file_type \
                    -> to_xml

Function Function

Compute MD5, SHA1, CRC32, and FileType

Function



  

Other (Potential) Security Domains:

● Reverse Engineering
● Malware Analysis
● Penetration Testing
● Intelligence Gathering
● Fuzzing
● Etc.



  

Moving on!

Hackersh



  

Hackersh

● Hackersh is a portmanteau of the words Hacker and Shell
● Shell (command interpreter) written with Pythonect-like syntax, 

built-in security commands, and out of the box wrappers for 
various security tools

● Current “stable“ version (True to May 15 2013): 0.2.0
● Made available under GNU General Public License v2 or later
● Influenced by: Unix Shell Scripting and Pythonect
● Cross-platform (should run on any Python supported platform)
● Website: http://www.hackersh.org

http://www.hackersh.org/


  

Motivation

● Taking over the world
● Automating security tasks and reusing code as much as 

possible



  

Problems

● There are many good security tools out there... 
– but only a few can take the others output and run on it
– but only a few of them give you built-in threads/processes 

controling for best results

● No matter how well you write your shell script, the next 
time you need to use it - for something slightly different - 
you will have to re-write it



  

Hackersh – The Solution

● Hackersh provides a “Standard Library“ where you can 
access your favorite security tools (as Components) and 
program them as easy as a Lego

● Hackersh lets you automagically scale your flows, using 
multithreading, multiprocessing, and even a Cloud

● Hackersh (using Pythonect as it's scripting engine) gives 
you the maximum flexibility to re-use your previous code 
while working on a new slightly-different version/script



  

Installing and Using The Hackersh

● Install directly from PyPI using easy_install or pip:
– easy_install Hackersh

OR
– pip install Hackersh

● Clone the git repository:
– git clone git://github.com/ikotler/hackersh.git

– cd hackersh

– python setup.py install



  

Implementation

● Component-based software engineering
– External Components

● Nmap
● W3af
● Etc.

– Internal Components
● URL (i.e. Convert String to URL)
● IPv4_Address (i.e. Convert String to IPv4 Adress)
● Etc.



  

Input/Output: Context

● Every Hackersh component (except the Hackersh Root 
Component) is standardized to accept and return the same data 
structure – Context.

● Context is a dict (i.e. associative array) that can be piped through 
different components

● Context stores both Data and Metadata
● The Metadata aspect enables potential AI applications to fine-

tune their service selection strategy based on service-specific 
characteristics



  

"http://localhost" \
    -> url \
        -> nmap \
            -> [_['PORT'] == '8080' and _['SERVICE'] == 'HTTP'] \
                -> w3af \
                    -> print

Conditional Flow



  

Hackersh High-level Diagram

Literal
(e.g. String)

Root
Component
(e.g. URL)

Context Component ...



  

<Hackersh Scripts/Examples>



  

"localhost" -> hostname -> nmap

Target
Built-in

Component

TCP & UDP Ports Scanning

External
Component



  

'192.168.1.0/24' -> ipv4_range -> ping

Target
Built-in

Component

Class C (256 Hosts) Ping Sweep

External
Component



  

'127.0.0.1' -> ipv4_address -> nmap -> nikto

Target
Built-in

Component

Web Server Vulnerability Scanner

External
Component

External
Component



  

"localhost" \
    -> hostname \
        -> [nslookup, pass] -> ...

Target
Built-in

Component

Fork: Target as Hostname + Target as IP

Target
as Hostname

...

Target
as IPv4 Addr.

...



  

"http://localhost" \
    -> url \
    -> nmap \
    -> browse \
    -> w3af \
    -> print

Target
Built-in

Component

Black-box Web App Pentration Testing

External
Component

Built-in
Component

External
Component

Built-in
Component



  

Hackersh Roadmap
● Unit Tests
● Documention
● More Tools

– Metasploit
– OpenVAS
– TheHarvester
– Hydra
– …

● Builtin Commands
● Plugins System
● <YOUR IDEA HERE>



  

Hackersh Official TODO

https://github.com/ikotler/hackersh/blob/master/doc/TODO

https://github.com/ikotler/hackersh/blob/master/doc/TODO


  

Questions?



  

Thank you!

My Twitter: @itzikkotler
My Email: ik@ikotler.org

My Website: http://www.ikotler.org

Pythonect Website: http://www.pythonect.org
Hackersh Website: http://www.hackersh.org

Feel free to contact me if you have any questions!

http://twitter.com/itzikkotler
mailto:ik@ikotler.org
http://www.ikotler.org/
http://www.pythonect.org/
http://www.hackersh.org/
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