

Pythonect-Fu:
 From Function() to Language

 Itzik Kotler
(Creator and Lead Developer of Pythonect & Hackersh)

Domain-specific Language

● Domain-specific language (DSL) is a mini-language aiming at
representing constructs for a given domain

● DSL is effective if the words and idioms in the language
adequately capture what needs to be represented

● DSL can also add syntax sugar

Why?

Why create a custom tag or an object with methods?

Elegant Code Reuse

Instead of having to recode algorithms every time you need them, you can just
write a phrase in your DSL and you will have shorter, more easily maintainable

programs

Example for DSL's

● Programming Language R
● XSLT
● Regular Expression
● Graphviz
● Shell utilities (awk, sed, dc, bc)
● Software development tools (make, yacc, lex)
● Etc.

Typical DSL Powered by Pythonect

Python (Core, Basic Functionality)

Pythonect (Syntax, Logic)

Framework (Domain Functionality)

Execution
Order

Pythonect

● Pythonect is a portmanteau of the words Python and Connect
● New, experimental, general-purpose dataflow programming language

based on Python
● Current “stable“ version (True to May 15 2013): 0.5.0
● Made available under 'Modified BSD License'
● Influenced by: Unix Shell Scripting, Python, Perl
● Cross-platform (should run on any Python supported platform)
● Website: http://www.pythonect.org/

http://www.pythonect.org/

A few words on the Development

● Written purely in Python (2.7)
– Works on CPython 2.x, and Jython 2.7 implementations

● Tests written in PyUnit
● Hosted on GitHub
● Commits tested by Travis CI

Installing and Using The Pythonect Interpreter

● Install directly from PyPI using easy_install or pip:
– easy_install Pythonect

OR
– pip install Pythonect

● Clone the git repository:
– git clone git://github.com/ikotler/pythonect.git

– cd pythonect

– python setup.py install

Dataflow Programming

Programming paradigm that treats data as something originating
from a source, flows through a number of components and arrives at
a final destination - most suitable when developing applications that

are themselves focused on the "flow" of data.

Dataflow Example

A video signal processor which may start with video input,
modifies it through a number of processing components (i.e. video filters),

and finally outputs it to a video display.

Local
File

Reader

Screen
Output
Display

Video
B&W

Frame
Procressor

Dataflow Example

Want to change a feed from a local file to a remote file on a website?

No problem!

URL
Downloader

Screen
Output
Display

Video
B&W

Frame
Procressor

Dataflow Example

Want to write the Video B&W Frame Processor output
to both a screen and a local file?

No problem!

URL
Downloader

Local
File

WriterVideo
B&W

Frame
Procressor Screen

Output
Display

Dataflow Programming Advantages

● Concurrency and parallelism are natural
● Data flow networks are natural for representing process
● Data flow programs are more extensible than traditional

programs

Dataflow Programming Disadvantages

● The mindset of data flow programming is unfamiliar to most
programmers

● The intervention of the run-time system can be expensive

Dataflow Programming Languages

● Spreadsheets are essentially dataflow (e.g. Excel)
● VHDL, Verilog and other hardware description languages are

essentially dataflow
● XProc
● Max/Msp
● ... Etc.

<Pythonect Examples>

'Hello, world' -> print

String Function

What do we have here?

● -> is a Pythonect Control Operator, it means async forward.

● There's also | (i.e. Pipe) which means sync forward.

● 'Hello, world' is a literal string

● print is a function

"Hello, world" -> [print, print]

String

Function

Function

 ["Hello, world", "Hello, world"] -> print

Function

String

String

Basic Pythonect Syntax Summary

● -> is async forward.

● | (i.e. Pipe) is sync forward.

● _ (i.e. Underscore) is current value in flow

Domain-specific Language with Pythonect

● Pythonect provides various features to let you easily develop
your own DSLs:
– Built-in Python module Autoloader
– Concurrency (Threads & Processes)
– Abstract Syntax (i.e. Generic Flow Operators)

Built-in Python AutoLoader

● The AutoLoader loads Python modules from the file system
when needed

● In other words, no need to import modules explicitly.
● The sacrifice is run-time speed for ease-of-coding and speed

of the initial import()ing.

'Hello, world' -> string.split

i.e.

import string
return string.split

Concurrency (Threads & Processes)

● Multi-threading:
– 'Hello, world' -> [print, print]

● Multi-processing:
– 'Hello, world' -> [print, print]

● Mix:
– 'Hello, world' -> [print, print &]

Abstract Syntax

● Brackets for Scope:
– []

● Arrows and Pipes for Flows:
– | and ->

● Dict and Logical Keywords for Control Flow:
– {} and not/or/and

from_file('malware.exe') \
 -> extract_base64_strings \
 -> to_xml

So, imagine the following is a real script:

IT IS!
(with Pythonect)

Meet SMALL

Simple Malware AnaLysis Language

● Toy language for analyzing malware samples
● Single Python file (14 functions, 215 lines of text)
● Runs on top of Pythonect

SMALL Features

● Extract IPv4 Addresses from Binaries
● Extract Base64 Strings from Binaries
● Calculate MD5/SHA1/CRC32
● Determine File Type (via /usr/bin/file)
● Create XML Reports

How Does SMALL Work?

● SMALL functions are divided into two groups:
– Root, these functions start a flow
– Normal, these functions continues or closes the flow

● Root functions accept String and return dict
– e.g. from_file()

● Normal functions accept dict and return dict

– e.g. extract_base64_strings()

<Pythonect/Security DSL (i.e. SMALL) Examples>

How to Start the SMALL Interpreter

pythonect -m SMALL -i

● The '-m' means - run library module as a script
● The '-i' means - inspect interactively after running script
● Just like Python :)

from_file('malware.exe') \
 -> extract_base64_strings \
 -> to_xml

Function Function

Extract Base64 Strings and Save As XML

Function

from_file('malware.exe') \
 -> extract_ipv4_addresses \
 -> to_xml

Function Function

Extract IPv4 Addresses and Save As XML

Function

from_file('malware.exe') \
 -> md5sum \
 -> sha1sum \
 -> crc32 \
 -> file_type \
 -> to_xml

Function Function

Compute MD5, SHA1, CRC32, and FileType

Function

Other (Potential) Security Domains:

● Reverse Engineering
● Malware Analysis
● Penetration Testing
● Intelligence Gathering
● Fuzzing
● Etc.

Moving on!

Hackersh

Hackersh

● Hackersh is a portmanteau of the words Hacker and Shell
● Shell (command interpreter) written with Pythonect-like syntax,

built-in security commands, and out of the box wrappers for
various security tools

● Current “stable“ version (True to May 15 2013): 0.2.0
● Made available under GNU General Public License v2 or later
● Influenced by: Unix Shell Scripting and Pythonect
● Cross-platform (should run on any Python supported platform)
● Website: http://www.hackersh.org

http://www.hackersh.org/

Motivation

● Taking over the world
● Automating security tasks and reusing code as much as

possible

Problems

● There are many good security tools out there...
– but only a few can take the others output and run on it
– but only a few of them give you built-in threads/processes

controling for best results

● No matter how well you write your shell script, the next
time you need to use it - for something slightly different -
you will have to re-write it

Hackersh – The Solution

● Hackersh provides a “Standard Library“ where you can
access your favorite security tools (as Components) and
program them as easy as a Lego

● Hackersh lets you automagically scale your flows, using
multithreading, multiprocessing, and even a Cloud

● Hackersh (using Pythonect as it's scripting engine) gives
you the maximum flexibility to re-use your previous code
while working on a new slightly-different version/script

Installing and Using The Hackersh

● Install directly from PyPI using easy_install or pip:
– easy_install Hackersh

OR
– pip install Hackersh

● Clone the git repository:
– git clone git://github.com/ikotler/hackersh.git

– cd hackersh

– python setup.py install

Implementation

● Component-based software engineering
– External Components

● Nmap
● W3af
● Etc.

– Internal Components
● URL (i.e. Convert String to URL)
● IPv4_Address (i.e. Convert String to IPv4 Adress)
● Etc.

Input/Output: Context

● Every Hackersh component (except the Hackersh Root
Component) is standardized to accept and return the same data
structure – Context.

● Context is a dict (i.e. associative array) that can be piped through
different components

● Context stores both Data and Metadata
● The Metadata aspect enables potential AI applications to fine-

tune their service selection strategy based on service-specific
characteristics

"http://localhost" \
 -> url \
 -> nmap \
 -> [_['PORT'] == '8080' and _['SERVICE'] == 'HTTP'] \
 -> w3af \
 -> print

Conditional Flow

Hackersh High-level Diagram

Literal
(e.g. String)

Root
Component
(e.g. URL)

Context Component ...

<Hackersh Scripts/Examples>

"localhost" -> hostname -> nmap

Target
Built-in

Component

TCP & UDP Ports Scanning

External
Component

'192.168.1.0/24' -> ipv4_range -> ping

Target
Built-in

Component

Class C (256 Hosts) Ping Sweep

External
Component

'127.0.0.1' -> ipv4_address -> nmap -> nikto

Target
Built-in

Component

Web Server Vulnerability Scanner

External
Component

External
Component

"localhost" \
 -> hostname \
 -> [nslookup, pass] -> ...

Target
Built-in

Component

Fork: Target as Hostname + Target as IP

Target
as Hostname

...

Target
as IPv4 Addr.

...

"http://localhost" \
 -> url \
 -> nmap \
 -> browse \
 -> w3af \
 -> print

Target
Built-in

Component

Black-box Web App Pentration Testing

External
Component

Built-in
Component

External
Component

Built-in
Component

Hackersh Roadmap
● Unit Tests
● Documention
● More Tools

– Metasploit
– OpenVAS
– TheHarvester
– Hydra
– …

● Builtin Commands
● Plugins System
● <YOUR IDEA HERE>

Hackersh Official TODO

https://github.com/ikotler/hackersh/blob/master/doc/TODO

https://github.com/ikotler/hackersh/blob/master/doc/TODO

Questions?

Thank you!

My Twitter: @itzikkotler
My Email: ik@ikotler.org

My Website: http://www.ikotler.org

Pythonect Website: http://www.pythonect.org
Hackersh Website: http://www.hackersh.org

Feel free to contact me if you have any questions!

http://twitter.com/itzikkotler
mailto:ik@ikotler.org
http://www.ikotler.org/
http://www.pythonect.org/
http://www.hackersh.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

