
© 2012 CrowdStrike, Inc. All rights reserved.

Ninjas and Harry Potter

“Spell”unking in Apple SMC Land

Alex Ionescu, Chief Architect @aionescu

NoSuchCon 2013 alex@crowdstrike.com

Bio

■ Reverse engineered Windows kernel since 1999

■ Lead kernel developer for ReactOS Project

■ Co-author of Windows Internals 5th and 6th Edition

■ Founded Winsider Seminars & Solutions Inc., to provide services
and Windows Internals training for enterprise/government

■ Interned at Apple for a few years (Core Platform Team)

■ Now Chief Architect at CrowdStrike

Introduction

Your Mac has a chip…

…that anyone can update…

…but you can’t read it.

It manages your light sensor…

…protects your disk…

…stores your FileVault key…

…has a “Ninja timer”…

…and has a backdoor…

…using a Harry Potter spell…

…all while regulating current and voltage

What is the SMC?

The System Management Controller I/O Chip

20MHz 16-bit Processor

8 32-bit General Purpose Registers

24-bit (16MB) Address Space

Multiple Timers + Watchdog

I2C Bus Access

12-line Interrupt Controller

Analog/Digital Converter

LPC Bus Access, UART, USB, ACPI

Various I/O Ports

160K Flash ROM

8K RAM

The System Management Controller I/O Chip

SMC Address Map

■ 0x000000-0x000FFF: Exception Vectors

■ 0x001000-0x005FFF: Unknown/Unused

■ 0x006000-0x006FFF: EPM UV Area

■ 0x007000-0x007FFF: EPM CV Area

■ 0x008000-0x022FFF: ROM Code + Data Variables

■ 0x027FE0-0x027FFF: Code Markers (TBD)

■ 0xFF2000-0xFF2FFF: Reserved (but used!)

■ 0xFFF800-0xFFFEFF: I/O Registers

■ 0xFFD080-0xFFEFFF: RAM (Data Variables)

■ 0xFFFF00-0xFFFF7F: RAM (Used as Stack)

■ 0xFFFF80-0xFFFFFF: I/O Registers

Renesas H8S/2117

■ Full compiler support through GCC

■ Renesas also has development kit and free SDK available

■ Used by many Intel Reference Platforms

■ Not just Apple – although this talk is only covering the Apple SMC

■ Full 32-bit registers (er0-er7)

■ Access model similar to x86 (er0 -> e0 + r0h, r0l)

Renesas H8S/2117

■ Different kinds of addressing modes

■ Absolute and relative, with various shifts and offsets

■ Fully supported by IDA processor module

■ But IDA sometimes has trouble with references

■ 69 instructions total

■ Complex data patterns hard to follow, but bit-instructions make I/O register
access a breeze to understand

H8S/2117 Registers & Instructions

What’s in an SMC Update?

■ Today’s SMC Updates are done through SMCFlasher.efi

■ Leverages AppleSMC.efi, which exposes the AppleSMCProtocol

■ SMCFlasher.efi is nothing but a renamed SMCUtil!

■ SMCUtil is a long sought-after “Internal Apple Tool”

■ Can dump all sorts of SMC information

■ Change SMC Modes

■ Flash various portions of the SMC

SMC Update Payload

■ SMCFlasher.efi takes a compressed payload as input

■ Unusual S-REC-lookalike format, but no standard tools for it

■ Contains typical checksum byte for each 64-byte block

■ But also contains checksum vectors for the checksums themselves

■ Wrote own tool to convert to binary image

■ Turns out, could’ve done it with grep (see presentation by Inverse Path)

Apple SMC Update Payload

Apple SMC Update Payload

SMC ROM (0x00000-0x27FFF – 160KB)

■ The SMC ROM code is called the User MAT by Renesas

■ It is considered the SMC “Application”, with a main()

■ It begins execution through the Reset Vector (0x0)

■ The first ~KB is filled with the various Interrupt Vectors

■ Renesas Datasheet has all the internal/external interrupt nubmers

■ Part of the chip’s responsibility is reacting to such interrupts

■ Timers, Watchdog, and ACPI + I/O Port (Accelerometer, I2C)

SMC ROM Code

■ As external events cause interrupts, the SMC code updates state

■ Some of this state is internal, used in further interrupts for chained state

■ Some of this state is exposed back to the system through SMC “Keys”

■ Likewise, interrupts can be generated by the SMC

■ Either on a regular basis, sending some piece of state to other hardware

■ Or on request (such as for UART or ACPI IF Notify Bytes)

■ The data can also be internal, or externalized through an SMC “Key”

SMC Key Mechanism

■ Much of SMC functionality is done by read/write access to “keys”

■ 4-byte character tags describing some functionality

■ SMC Firmware has handlers for each key

■ Total keys = #SMCs * #Keys

■ Both of these are exposed through defined keys (TBD)

■ Key names can be enumerated

■ But all is not what it seems..

SMC Firmware Key Descriptors

SMC Key Attributes

■ SMC Keys have attributes, which are a combination of:

■ Read (0x80)

■ Write (0x40)

■ Function (0x10)

■ Const (0x8)

■ Private (0x1)

■ Atomic? (0x2)

SMC Key Example

■ We can run functions in the SMC which return a result

■ SMC Functions receive a parameter in er0 which is 0x10 (R) or 0x11 (W)

■ Input and/or output buffers are in er1

■ DEMO: As an example, take CRCB vs CRCU

■ CRCU causes a checksum to be taken of the entire UserMAT area

■ Useful to write this down somewhere and periodically check on it ;-)

■ Attacker could “fake” it however

Interesting SMC Keys

■ 3rd party Apple Service Technician leaked old Apple SMC Key List

■ Outdated, and focused on desktop device, but contains many useful keys

■ Reveals existence of a Ninja Action Timer

■ Can be programmed to fire at a certain time and take an action (i.e.: reboot)

■ Reveals many keys related to power management & regulation,
thermals, battery and adaptor data

■ DEMO: Controlling the fans manually

More Interesting SMC Keys…

■ The last two keys enumerated by the SMC are OSK0 and OSK1

■ Names suggest “Operating System Key 0, 1”

■ Large data blobs (32-characters), suggestive indeed of cryptographic keys

■ DEMO: Let’s dump the keys

■ There’s actually a very good reason for having keys as English

■ Any lawyers in the room?

Really Interesting SMC Keys…

■ By using IDA to dump the list of keys, a discrepancy is noted!

■ There are two more keys that are not officially listed

■ In fact a function (smcManageBackdoor in my IDB) is responsible for patching the table

■ The two mystery keys are KPPW and KPST

■ Kernel Protection Password, Kernel Protection Status?

■ KPST returns the variable (g_KernelProtectionStatus)

■ Set to 1 if KPPW suceeds

How to make KPPW Succeed?

Requires input buffer to be “SpecialisRevelio”

Wait… seriously?

■ http://harrypotter.wikia.com/wiki/Scarpin's_Revelaspell

■ Scarpin's Revelaspell (Specialis Revelio) is a charm that is used
to reveal charms and hexes that have been cast onto a target[1]. It
can also, however, be used to reveal the ingredients of a potion.

■ http://en.wikipedia.org/wiki/List_of_spells_in_Harry_Potter#Special
is_Revelio_.28Scarpin.27s_Revelaspell.29

■ Description: Causes an object to show its hidden secrets or
magical properties.

■ Seen/mentioned: Used by Hermione to find out more of Harry's
Advanced Potion-Making book in Half-Blood Prince. Used by Ernie
Macmillan to find out the ingredients of a potion.

http://harrypotter.wikia.com/wiki/Scarpin's_Revelaspell
http://harrypotter.wikia.com/wiki/Scarpin's_Revelaspell
http://harrypotter.wikia.com/wiki/Charm
http://harrypotter.wikia.com/wiki/Charm
http://harrypotter.wikia.com/wiki/Hex
http://harrypotter.wikia.com/wiki/Scarpin's_Revelaspell
http://en.wikipedia.org/wiki/List_of_spells_in_Harry_Potter
http://en.wikipedia.org/wiki/List_of_spells_in_Harry_Potter
http://en.wikipedia.org/wiki/List_of_spells_in_Harry_Potter
http://en.wikipedia.org/wiki/Ernie_Macmillan
http://en.wikipedia.org/wiki/Ernie_Macmillan

Memory Address Cycle (MAC)

■ Three keys allow reading the SMC!

■ MACA: Sets the address in the SMC to read

■ MACM: Auto-incrementing addressing or manual-MACA addressing

■ MACR: Returns 32-bits from MACA, increments if MACM set

■ But “restricted to EPM range”

■ This is where the mystery “Kernel Status” comes in

Effect of SmcKernelStatus == 1

Allows reading RAM, Stack, and FF2000 “Reserved” Region

 ROM Reads still not allowed

SMC Kernel Extension (AppleSMC.kext)

Kernel Extension

■ Manages SMC Runtime Support

■ Interrupts from SMC

■ Notifications to SMC

■ Implements IOUserClient

■ Allows read (non-privileged) and write (privileged) to SMC Keys

■ Allows other special commands (ACPI Notify, more…)

SMC Interrupts

■ Five interrupts are configured in the SMC

■ sms-shock-int (Detection of sudden disk shock, causes Disk Head Park)

■ sms-drop-int (Same as above)

■ sms-orientation-int (Change in orientation)

■ als-change-int (Change in ambient lighting)

■ EmergencyHeadPark (Again, related to disk head parking)

SMC Notifications

■ SMC can also be notified with IoRegistryEntrySetCFProperty

■ “TheTimesAreAChangin”

■ Sets SMC ‘CLKT’ and ‘CLKH’

■ Also supports Mach Message Notification (0xE0078000)

■ Sets SMC ‘RAID’ value to 1

■ Power State Change Callback (0xE000031)

■ Sets SMC ‘MSDW’ key to zero

SMC KEXT User-Mode Client Access

■ IOServiceGetMatchingService(“AppleSMC”)

■ IoConnectCallMethod(kSMCUserClientOpen/kSMCUserClientClose)

■ IoConnectCallMethod(kSMCHandleYPCEvent)

■ kSMCReadKey, kSMCWriteKey

■ kSMCGetKeyCount, kSMCGetKeyFromIndex, kSMCGetKeyInfo

■ kSMCReadStatus, kSMCReadResult

■ kSMCGetPLimits, kSMCFireInterrupt, kSMCGetVers

SMC KEXT “Variable Commands”

■ kSMCVariableCommand provides interesting access

■ 1: Writes LAtN with user input (ACPI Proprietary IF Notify)

■ 2: Sets SMC System Type

■ 3: Panics the machine!

■ 4: Sets Watchdog Timer

■ 5: Dumps Notifications

■ 6: Sets SMC Sleep State

SMC Errors (Shared in Firmware + KEXT)

■ kSMCCommCollision = -80

■ kSMCSpuriousData = -7F

■ kSMCBadCommand = -7E

■ kSMCBadParameter = -7D

■ kSMCKeyNotFound = -7C

■ kSMCKeyNotReadable = -7B

■ kSMCKeyNotWritable = -7A

■ kSMCKeySizeMismatch = -79

■ kSMCFramingError = -78

■ kSMCBadArgumentError = -77

■ kSMCTimeoutError = -49

■ kSMCKeyIndexRangeError = -48

■ kSMCBadFuncParameter = -40

■ kSMCDeviceAccessError = -39

■ kSMCUnsupportedFeature = -35

■ kSMCSMBAccessError = -34

Conclusion

Key Takeaways

■ The Apple SMC is a treasure trove of undocumented mechanisms

■ Probably partly responsible for power & thermal efficiency

■ The AppleSMC KEXT opens up interesting non-admin possibilities
for SMC access

■ But most holes plugged in Mountain Lion

■ The OS, EFI, and ACPI, all contain code to work with the SMC

■ Anyone can flash the SMC, but nobody can (easily) read it

Future Work

■ Reverse engineered 100% of the AppleSMC KEXT for Lion

■ Working on updating it for Mountain Lion Support

■ There are also other KEXTs, such as the SMC Platform Plugin

■ Would like to release it, but most interest around SMC is related to
piracy/cloning of OS X, and do not want to condone that

■ Reverse engineered 30% of the Apple SMC firmware

■ Still don’t understand what EPM UV/CV areas are

■ Lots of behaviors still misunderstood / not yet understood

QA

■ Greetz/shouts to: msuiche, Andrea Barisani, Daniele Bianco

■ See you at Recon!

